A. James Clark School of Engineering

Permanent URI for this communityhttp://hdl.handle.net/1903/1654

The collections in this community comprise faculty research works, as well as graduate theses and dissertations.

Browse

Search Results

Now showing 1 - 4 of 4
  • Thumbnail Image
    Item
    DESIGN MODIFICATIONS TO MINIMIZE POLLUTANT LEACHING FROM COMPOST-AMENDED BIORETENTION
    (2024) Lei, Lei; Davis, Allen P.; Civil Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Bioretention is an effective stormwater control measure (SCM) recognized for its ability to capture and treat urban runoff within a shallow basin using engineered soils and vegetation. Bioretention studies at laboratory and field scales have shown good to excellent removal efficiency for heavy metals (> 80% to > 90%) and have observed high variablility ranging from negative (net export) to 99% in phosphorus and nitrogen removals. Water quality studies have shown that media selection for bioretention is critical in determining pollutant removal.Incorporating compost into bioretention media is an eco-friendly strategy that not only diverts organic waste from landfills but also provides several benefits improving the performance of bioretention system. This approach enriches the media with organic matter and nutrients for vegetation, boosts water holding and cation exchange capacity, stabilizes the soil structure, and improves the retention of pollutants. However, careful management is essential to mitigate the potential releasing pollutants, including dissolved organic matter (DOM), soluble nutrients, and metals readily associated with DOM, particularly if the compost is derived from biosolids... To maximize the benefits of compost in bioretention, special design modifications aimed at enhancing pollutant removal should be implemented. The objective of this research was to investigate ways to optimize the use of compost in bioretention while minimizing pollutant leaching, Design modifications investigated include layering compost over media, aluminum-based drinking water treatment residual (Al-WTR) addition, and incorporation of an internal water storage (IWS) layer. Treatment performances were evaluated through extractions, batch adsorption studies, large column mesocosms, and column media characterizations. Al-WTR amendment improved sorption of phosphorus, copper and zinc, with capacities increasing from 22.5 mg/kg to 161 mg/kg and 193 mg/kg for P, from 121 mg/kg to 166 mg/kg and then to 186 mg/kg for Cu, and from 121 mg/kg to 166 mg/kg and 186 mg/kg for Zn with 0%, 2% and 4% Al-WTR additions. The multilayered system containing a compost incorporated top layer and an Al-WTR amended bottom layer showed good removal of phosphorus (94% and 96%), copper (88% and 86%) and zinc (92% and 96%), and enhanced nitrogen retention (74.1%) from the stormwater load compared to a mixed system (32.8%) as reported by Owen et al. (2023). The installation of an IWS layer did not show statistically significant influences on phosphorus (91% to 93%, p > 0.05), copper (66% to 90%, p > 0.05) or zinc (94% to 95%, p > 0.05) removals, had limited effect on nitrogen retention from stormwater load during storm events (-117% to -188%, p > 0.05), but promoted denitrification during dry periods. With the IWS layer installed, high levels of iron leaching (130 to 11800 µg/L) were detected, likely due to change in the redox potential (from aerobic to anaerobic). With the objective of removing phosphorus and heavy metals from the stormwater, 5.3% of compost (by dry mass) can be used when layering compost over the Al-WTR amended bioretention media. When the design goal is to remove nitrogen, a fraction of compost up to 2.6%, by dry mass can be used, with layering the compost over the bioretention media and an IWS installed at the bottom.
  • Thumbnail Image
    Item
    NUTRIENT MOVEMENT IN A VEGETATED COMPOST BLANKET AMENDING A VEGETATED FILTER STRIP ON A HIGHWAY SLOPE
    (2022) Forgione, Erica Rose; Davis, Allen P; Civil Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Excess stormwater runoff caused by rapid urbanization and exacerbated by climate change generates many challenges for public safety and the environment. Large runoff volumes contribute to flooding and pollutants in stormwater runoff pose risks to human and environmental health, including toxicity to the aquatic environment caused by heavy metals and nutrient pollution leading to eutrophication, the cause of harmful algal blooms. An effort is being made to improve the efficiency of existing highway stormwater control systems which have limited performance in terms of volume reduction and pollutant removal. To address this issue, amendment of highway Vegetated Filter Strips (VFS) with a Vegetated Compost Blanket (VCB), a layer of seeded compost placed on an established slope, has been proposed. Compost has high water holding capacity and organic matter content which can immobilize contaminants of concern. However, the high nutrient content of compost poses a threat to net beneficial performance since excess nutrient leaching occurs after application. This research has posed the question: Can a VCB be used as a stormwater control measure (SCM) while avoiding excessive nutrient leaching?The VCB/VFS system was assessed through lab-scale, greenhouse-scale, and field-scale experiments. Hydrologic performance was evaluated in field and greenhouse experiments through evaluation of dynamic flow modification, event volume storage, and cumulative volume retention. Water quality performance was assessed through analysis of Total Suspended Solids (TSS), Nitrate + Nitrite (NOx), Total Kjeldahl Nitrogen (TKN), Total Nitrogen (TN), Total Phosphorus (TP), filtered and total Copper, and total Zinc concentrations. Nitrogen (N) and phosphorus (P) in compost are naturally transformed from organic to inorganic, soluble forms through the microbially-mediated process of mineralization. Nutrient removal occurs through adsorption as compost leachate passes through the VFS soil layer. To further investigate nutrient movement, small scale laboratory experiments were completed to determine the N and P compost mineralization rates and theoretical soil adsorption capacities. Nutrient data from greenhouse and field experiments were empirically evaluated using the lab-obtained mineralization data. Nutrient release was simulated and compared to experimental field data using a new open-source software, OpenHydroQual, which combines hydraulic and water quality modeling. VCBs were found to have a significant impact on both flow and volume reduction, though at the highest flowrates, VCBs were unable to significantly reduce flow and instead acted as conveyance. A useful design estimate for representative storage capacity using the saturated moisture content and wilting point of both the VCB and VFS was determined. Significant TSS removal was observed in both the field and greenhouse studies and particulate metals were largely removed; however dissolved copper leaching was observed in the field experiment, as has been observed previously for some compost in stormwater systems. Highly elevated concentrations of nutrients (as high as 100 mg/L TN and 12 mg/L TP) were observed in the effluent of both field and greenhouse experiments, resulting in net nutrient leaching and concentrations above recommended EPA freshwater limits even after 1-2 years. Additionally, mass loading rates at the field site (as high as 41 kg/ac/yr for TN and 14 kg/ac/yr for TP) were 1-2 magnitudes higher than observed influent mass loading rates (~3.8 kg/ha/yr for TN and ~0.47 kg/ha/yr for TP). Through laboratory mineralization studies, N and P mineralization rates were found to differ between compost batches, with initial nutrient content and age/leaching of compost being important factors. Adsorption experiments indicated increasing P adsorption from compost leachate with increasing soil Al+Fe content. Comparisons to greenhouse and field data showed differences in N speciation, likely due to differences in moisture content and temperature causing differing amounts of nitrification and volatilization. OpenHydroQual modeling showed modest results, with varying levels of accuracy for storm hydrograph simulation and mass release. VCBs are not currently recommended for use due to the risk of nutrient and metals pollution, especially in nutrient and metals sensitive watersheds. However, several impactful factors were identified that may reduce nutrient leaching, including compost composition, compost age/leaching, and VFS soil type.
  • Thumbnail Image
    Item
    LOW IMPACT DEVELOPMENT MIXTURE EVALUATION FOR HEAVY METAL REMOVAL
    (2019) Liang, Liang; Davis, Allen P.; Civil Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    To address non-point heavy metal pollutant sources to urban stormwater runoff, the LIDMATTM (Low Impact Development MAT) is a stormwater management runoff system designed and manufactured for effective treatment for heavy metals. The LIDMATTM contains approximately 70% sand, 25% manure compost, and 5% steel slag by mass. The LIDMATTM was evaluated based on flow rate, pH, heavy metal removal, and the concentrations of N and P leached; conditions for optimum removal have been quantified. For treating synthetic stormwater runoff, 12 trials were completed using bench-scale and column media testing systems. Average effluent event mean concentrations of all trials were 25 ± 10 μg/L Cu, 21 ± 13 μg/L Pb, and 57 ± 42 μg/L Zn from studies at influent concentrations of 500 μg/L, 300 μg/L, and 100 μg/L, which satisfy Numeric Action Levels (NALs) of Cu, Pb, and Zn by the state of California, USA, Industrial General Permit (IGP). The leaching of nitrogen and phosphorous were also below the NALs.
  • Thumbnail Image
    Item
    Nutrient Leaching from Leaf-and-Grass Compost Addition to Stormwater Submerged Gravel Wetlands
    (2016) Mangum, Kyle Robert; Davis, Allen P; Civil Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Submerged Gravel Wetlands (SGWs) are subsurface-flow wetlands, and are effective stormwater control measures (SCM). Compost addition has many properties beneficial to SGWs but may also lead to leaching of nitrogen (N) and phosphorus (P). To investigate nutrient leaching effects of leaf-and-grass compost addition in SGWs, mesocosm studies were conducted using bioretention soil media (BSM) mixed with 30% and 15% compost, by volume. Synthetic stormwater was applied to mesocosms and effluent analyzed for N and P. Compost-added mesocosms were found to leach N and P. Maximum N concentrations of 16 and 6.4 mg-N/L were reached after 1.7 and 3.0 cm of rainfall for 15% and 30%, respectively. Maximum P concentrations of 2.9 and 0.52 mg-P/L were both reached after 2.5 cm for 30% and 15%, respectively. Particulate P was the dominant P species found in effluent samples, while N species were mixed. Although compost addition led to leaching of N and P, treatment of both nutrients was achieved, with the 15%, reaching a net-zero export of P after the equivalent of 20 cm of rainfall. Nitrogen treatment was attributed to denitrification and plant and microbial uptake. Phosphorus treatment was attributed primarily to adsorption.