A. James Clark School of Engineering
Permanent URI for this communityhttp://hdl.handle.net/1903/1654
The collections in this community comprise faculty research works, as well as graduate theses and dissertations.
Browse
6 results
Search Results
Item Additive Manufacturing for Recapitulating Biology in vitro and Establishing Cellular & Molecular Communication(2023) Chen, Chen-Yu; Bentley, William E.; Bioengineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Recapitulating biological systems within laboratory devices, particularly those with analytical instrumentation, has enhanced our ability to understand biology. Especially useful are systems that provide data at the length and time scales characteristic of the assembled biological systems. In this dissertation, we have employed two advanced technologies — additive manufacturing and electrobiofabrication to create systems that both recapitulate biology and provide ready access to molecular data. First, we utilized two-photon direct laser writing (DLW) and digital light processing (DLP) 3D printing to reconstruct morphologies of human gut villi. Our constructs enable small molecule diffusion through pores and enable epithelial cell growth and differentiation, as in the gastrointestinal (GI) tract. We also developed a cell/particle alignment methodology that applies a vacuum on the underside of a device to rapidly facilitate attachment to 3D printed scaffolds. These simple demonstrations of additive manufacturing show how one can better tailor geometric features of organ-on-a-chip and other in vitro models. We then added electrobiofabrication as a means create functionalized surfaces that rapidly assemble biological components, noted for their labile nature, onto devices with just an applied voltage. In one example, we show how a thiolated polyethylene glycol (PEG) can be electroassembled as a sensor interface that includes antibody binding proteins for both titer and glycan analysis. Rapid assessment of titer and glycan structure is important for biopharmaceuticals development and manufacture. While the interface and sensing methodology was performed using standard laboratory instrumentation, we show that the methodology can be streamlined and operated in parallel by incorporating into a microfluidic sensor platform. Additionally, we show how the combination of optical and electrochemical (redox) based measurements can be combined in a simplified insert that “fits” nearly any microplate reader or other fairly standardized laboratory spectrophotometric unit. We believe that by adapting transformative electrochemical analytical methods so they can augment more traditional optical techniques, we might ultimately generate devices that provide a far more comprehensive picture of the target, promoting better investigation. Specifically, we show how three important biological and chemical systems can be interrogated using both optical measurements and electrochemistry: the oxidation state of proteins including monoclonal antibodies, redox status of hydrogel materials, and electrobiofabrication and electrogenetic induction. Lastly, we demonstrate how electrobiofabrication can be used to create designer communities of bacteria — artificial biofilms — the study of which is important for understanding phenomena from infectious disease to food contamination. That is, we discovered that by varying the applied voltage, surface area, and composition of the to-be-assembled hydrogel solution, we can precisely control the intercellular environment among bacterial populations. In sum, this dissertation integrates advances in assembly, through additive manufacturing, electrobiofabrication, with advances in electrochemical analysis to bring to the fore an electronic understanding of complex biological phenomena. We believe that the capability of translating biological information into a processible digital language opens tremendous opportunities for advancing our understanding of nature’s amazing systems, potentially enabling electronic means to control her subsystems.Item CHARACTERIZATION OF NON-DISPERSIVE INFRARED SENSORS FOR R-32 AND R-454B LEAKS(2022) Leahy, James Ryan O; Sunderland, Peter B; Fire Protection Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Due to the increased concerns about climate change, multiple states including California havestarted to pass legislation that phases out high global warming potential (GWP) refrigerants in HVAC and refrigeration systems. The likely replacements are A2L refrigerant which have lower GWP and are mildly flammable. This will require area monitoring leak detection systems for all future applications of these refrigerants. These detection systems preferably need to operate continuously for up to 15 years. The UL 60335-2-40 (2019) standard defines the sensor response time which must alarm within 10 seconds of exposure to 100% of the refrigerant’s LFL. Development of sensors capable of meeting the UL 60335-2-40 standard has been slow with many different types of gas sensing technologies being used. One of these technologies that was identified as a potential candidate was non-dispersive infrared (NDIR). A sensor not yet available commercially was able to be obtained to test its response to A2L refrigerants R-32 and R-454B according to the UL 60335-2-40 standard. Three other competing sensing technologies were also obtained to compare the performance of other sensors about to hit the market. These sensors were characterized by their linearity to varying concentrations of A2L refrigerant, response time, and to contamination. All the tested sensors were able to meet the 10 second requirement for response time. However, all but the NDIR sensor experienced a change in output when exposed to a list of prescribed contaminants by the UL 60335-2-40 standard. After the contamination, the NDIR sensor showed no change in its output indicating it experienced no poisoning effect. The NDIR sensor was deemed to have the optimal performance out of the sensing technologies. Long term exposure, exposure to contaminants and refrigerant at the same time, and service lifetime are still concerns.Item QUANTIFYING THE ADDED VALUE OF AGILE VIEWING RELATIVE TO NON-AGILE VIEWING TO INCREASE THE INFORMATION CONTENT OF SYNTHETIC SATELLITE RETRIEVALS(2022) McLaughlin, Colin; Forman, Barton A; Civil Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Satellite sensors typically employ a “non-agile” viewing strategy in which the boresight angle between the sensor and the observed portion of Earth’s surface remains static throughout operation. With a non-agile viewing strategy, it is relatively straightforward to predict where observations will be collected in the future. However, non-agile viewing is limited because the sensor is unable to vary its boresight angle as a function of time. To mitigate this limitation, this project develops an algorithm to model agile viewing strategies to explore how adding agile pointing into a sensor platform can increase desired information content of satellite retrievals. The synthetic retrievals developed in this project are ultimately used in an observing system simulation experiment (OSSE) to determine how agile pointing has the potential to improve the characterization of global freshwater resources.Item Thermal Tracking and Estimation for Microprocessors(2016) Zhang, Yufu; Srivastava, Ankur; Electrical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Due to increasing integration density and operating frequency of today's high performance processors, the temperature of a typical chip can easily exceed 100 degrees Celsius. However, the runtime thermal state of a chip is very hard to predict and manage due to the random nature in computing workloads, as well as the process, voltage and ambient temperature variability (together called PVT variability). The uneven nature (both in time and space) of the heat dissipation of the chip could lead to severe reliability issues and error-prone chip behavior (e.g. timing errors). Many dynamic power/thermal management techniques have been proposed to address this issue such as dynamic voltage and frequency scaling (DVFS), clock gating and etc. However, most of such techniques require accurate knowledge of the runtime thermal state of the chip to make efficient and effective control decisions. In this work we address the problem of tracking and managing the temperature of microprocessors which include the following sub-problems: (1) how to design an efficient sensor-based thermal tracking system on a given design that could provide accurate real-time temperature feedback; (2) what statistical techniques could be used to estimate the full-chip thermal profile based on very limited (and possibly noise-corrupted) sensor observations; (3) how do we adapt to changes in the underlying system's behavior, since such changes could impact the accuracy of our thermal estimation. The thermal tracking methodology proposed in this work is enabled by on-chip sensors which are already implemented in many modern processors. We first investigate the underlying relationship between heat distribution and power consumption, then we introduce an accurate thermal model for the chip system. Based on this model, we characterize the temperature correlation that exists among different chip modules and explore statistical approaches (such as those based on Kalman filter) that could utilize such correlation to estimate the accurate chip-level thermal profiles in real time. Such estimation is performed based on limited sensor information because sensors are usually resource constrained and noise-corrupted. We also took a further step to extend the standard Kalman filter approach to account for (1) nonlinear effects such as leakage-temperature interdependency and (2) varying statistical characteristics in the underlying system model. The proposed thermal tracking infrastructure and estimation algorithms could consistently generate accurate thermal estimates even when the system is switching among workloads that have very distinct characteristics. Through experiments, our approaches have demonstrated promising results with much higher accuracy compared to existing approaches. Such results can be used to ensure thermal reliability and improve the effectiveness of dynamic thermal management techniques.Item The Design, Construction and Testing of a Scour Monitoring System Using Magnetostrictive Materials(2014) Day, Steven Richard; Flatau, Alison B; Aerospace Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)A system for the continuous monitoring of scour has been designed, constructed and implemented. The system detects the level of scour by attaching flow to a buried post at known depths, and detecting when individual sensors become unearthed. Two bio-inspired flow sensors were designed and constructed for use on the post. The first, resembling a seal whisker, utilized the magnetostrictive materials Alfenol and Galfenol and was optimized for >0.15m/s flow. The second, resembling seaweed, used a conventional permanent magnet and was optimized for <0.15m/s flow. A small, low powered data acquisition system was designed and constructed to monitor and record the data from the sensors. A total of four scour posts were installed at two different sites; two vertically to monitor conventional scour and two horizontally to monitor lateral riverbed migration. Data from the posts was analyzed and presented and lessons learned were documented.Item AN INTEGRATED MICROSYSTEM FOR BACTERIAL BIOFILM DETECTION AND TREATMENT(2014) Kim, Young Wook; Ghodssi, Reza; Electrical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Bacterial biofilms cause severe infections in clinical fields and contamination problems in environmental facilities. Due to the unique complex structure of biofilms that comprise diverse polysaccharides and bacteria, traditional antibiotic therapies require a thousand times higher concentration compared to non-biofilm associated infections. The early detection of biofilms, before their structures are fully established in a given host/environment, is critical in order to eradicate them effectively. Also, the development of a new innovative biofilm treatment method that can be utilized with a low dose of antibiotic would be extremely important to the medical community. In this dissertation, a biofilm sensor and a new biofilm treatment method were independently developed to detect and treat biofilm communities, respectively. Furthermore, an integrated microsystem was demonstrated as a single platform of the sensor with the treatment method. The sensor was based on the surface acoustic wave (SAW) detection mechanism, which isn extremely sensitive for biofilm monitoring (hundreds of bacterial population detection limit) and consumes very low power (~100 µW). A piezoelectric ZnO layer fabricated by a pulsed laser deposition process was a key material to induce homogeneous acoustic waves. Reliable operation of the sensor was achieved using an Al2O3 film as a passivation layer over the sensor to protect ZnO degradation from the growth media. The sensor successfully demonstrated real-time monitoring of biofilm growth. The new biofilm treatment was developed based on the principles of the bioelectric effect that introduces an electric field along with antibiotics to biofilms, demonstrating significant biofilm inhibition compared to antibiotic treatment alone. Specifically, the new bioelectric effect was implemented with a superpositioned (SP) electric field of both alternating and direct current (AC and DC) and the antibiotic gentamicin (10 µg/mL). With the SP field treatment, significant biofilm reduction was demonstrated in total biomass (~ 71 %) as well as viable bacterial density (~ 400 times respected to the only antibiotic therapy) of the treated biofilms. This method was transferred to a microfluidic system using microfabricated planar electrodes. The microsystem-level implementation of the bioelectric effect also showed enhanced biofilm reduction (~ 140 % total biomass reduction improvement). The integrated system was based on the SAW sensor with the addition of coplanar thin electrodes to apply electric signals for the biofilm treatment. The chip was tested with two bacterial biofilms (Escherichia coli and Pseudomonas aeruginosa) that are clinically relevant strains. In both biofilm experiments, the integrated system demonstrated successful real-time biofilm monitoring and effective biofilm inhibition. This systematic integration of a continuous monitoring method with a novel effective treatment technique is expected to advance the state of the art in the field of managing clinical and environmental biofilms.