A. James Clark School of Engineering

Permanent URI for this communityhttp://hdl.handle.net/1903/1654

The collections in this community comprise faculty research works, as well as graduate theses and dissertations.

Browse

Search Results

Now showing 1 - 5 of 5
  • Thumbnail Image
    Item
    Econometric Evaluation of Transportation Policies: Decarbonization and Electrification
    (2024) Burra, Lavan Teja; Cirillo, Cinzia; Civil Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    The transportation sector, one of the largest contributors to global energy-related emissions, is undergoing a major transition. Governments worldwide are implementing stringent fuel economy and emissions standards, promoting the adoption of electric vehicles--a key technology for decarbonizing the transport sector--through various policy measures. This dissertation contains four chapters, studying the effects of such policies implemented across major vehicle markets and evaluating their effectiveness, with a particular focus on the electrification of light-duty passenger vehicle fleet. The first chapter explores whether multi-car households shift mileage to the most fuel-efficient car in response to increasing driving costs, which carries implications for designing effective fuel economy standards. The second chapter investigates the potential interaction between purchase subsidies given to consumers in buying electric vehicles (EVs) and expanding the public charging network. The third chapter focuses on the effectiveness of purchase subsidies for EV buyers and quantifies the free-rider share, given that this is a commonly employed policy measure worldwide. The final chapter explores the differential effects of level 2 and level 3 chargers, as well as the distributional impacts of public charging network on driving EV uptake across various demographic groups and built environment characteristics. Overall, the chapters in this dissertation employ travel survey data, longitudinal and big data analysis, causal identification, optimal policy design, counterfactual simulations, and a combination of data and economic reasoning to glean insights on the effectiveness and equitable aspects of policies aiming to decarbonize and electrify the transportation sector.
  • Thumbnail Image
    Item
    THE TROUBLE WITH VOLUNTARY CARBON TRADING FOR BUILDINGS EXPOSED TO HURRICANE RISK
    (2017) Liu, Xiaoyu; Cui, Qingbin; Civil Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Increased climate risks pose challenges of combining climate mitigation and adaptation goals into building designs. These two goals are often misaligned, as adaptation measures use additional materials and equipment that are sources of carbon emissions. This phenomenon causes building design to involve tradeoffs between enhancing structural resilience and reducing emissions. This dissertation addresses the need to identify the optimal investment mechanisms for the design of buildings in hurricane-prone regions. Dynamic decision-making models are developed for individual investors to characterize emission trading and risk mitigation behaviors over a building’s lifecycle. The models enable the following outcomes: (i) evaluation and selection of baseline rules for sectoral emission trading, (ii) ability to reflect resilience goals in the building design, construction and maintenance, and to balance between climate mitigation and adaptation goals for a wide range of building examples, and (iii) policy implications for improving emission trading efficiencies and achieving environmental and economic sustainability at community level. Modeling results indicate that the trouble of voluntary emission trading is mainly attributed to imperfect market information and future climate risks. The uncertainty in predicting emissions and potential baseline manipulation leads to the production of non-additional carbon offsets and an extension of sectoral emission caps. This situation is even bleaker when emission trading are implemented in the areas that exposure to significant risks of catastrophic events such as hurricanes. The results reveal a trend of a transition from long-advocated low-carbon investment to a risk-oriented portfolio for building retrofits in hurricane-prone regions. The risk mitigation efforts should be pursued with discretion on the accuracy of insurance premium discounts. Meanwhile, subsidies for emission abatements are recommended to accommodate existing emission trading schemes and building property values.
  • Thumbnail Image
    Item
    Offtake Strategy Design for Wind Energy Projects under Uncertainty
    (2014) Zhu, Xinyuan; Cui, Qingbin; Civil Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Energy use from wind, solar, and other renewable sources is a public policy at the federal and state levels to address environment, energy, and sustainability concerns. As the cost of renewable energy is still relatively high compared to fossil fuels, it remains a critical challenge to make renewable energy cost competitive, without relying on public subsidies. During recent years, much advance has been made in our understanding of technology innovations and cost structure optimization of renewable energy. A knowledge gap exists on the other side of the equation - revenue generation. Considering the complexity and stochastic nature of renewable energy projects, there is great potential to optimize the revenue generation mechanisms in a systematic fashion for improved profitability and growth. This dissertation examines two primary revenue generation mechanisms, or offtake strategies, used in wind energy development projects in the U.S. While a short-term offtake strategy allows project developers to benefit from price volatility in the wholesale spot market for profit maximization, a long-term offtake strategy minimizes the market risk exposure through a long-term Power Purchase Agreement (PPA). With Conditional Value-at-Risk (CVaR) introduced as a risk measure, this dissertation first develops two stochastic programming models for optimizing offtake designs under short and long-term strategies respectively. Furthermore, this study also proposes a hybrid offtake strategy that combines both short and long-term strategies. The two-level stochastic model demonstrates the merit of the hybrid strategy, i.e. obtaining the maximized profit while maintaining the flexibility of balancing and hedging against market and resource risks efficiently. The Cape Wind project in Massachusetts has been used as an example to demonstrate the model validity and potential applications in optimizing its revenue streams. The analysis shows valuable implications on the optimal design of renewable energy project development in regard to offtake arrangements.
  • Thumbnail Image
    Item
    Negative Construction Sectors That Inflate Gross Domestic Product: An Economic Case Study of Seattle Commercial Construction
    (2014) Christianson, Jeffrey James; Cui, Qingbin; Civil Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Gross Domestic Product (GDP) was created as a way to measure US production of products and services. GDP was not intended to guide policy making or as an indicator of the country's welfare. The commercial construction sectors of asbestos abatement, soil remediation, and building demolition are tangential to the actual cost of constructing a building and the country would be better off if these construction sectors were not necessary, even at the jeopardy of a reduced GDP. This thesis examines the specific costs of these construction sectors in Seattle commercial construction industry and determines that 1.66 percent of a Seattle commercial construction project's cost is spent on asbestos abatement, soil remediation, and building demolition. This research challenges the use of GDP and emphasizes the need for a different means to measure economic progress in consideration of the incurred environmental and social costs in the production of products and services.
  • Thumbnail Image
    Item
    GUARANTEE DESIGN ON ENERGY PERFORMANCE CONTRACTS UNDER UNCERTAINTY
    (2011) Deng, Qianli; Cui, Qingbin; Jiang, Xianglin; Civil Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Due to the growing concerns with climate change and energy supply, Energy Performance Contracting (EPC), which uses the guaranteed future utility savings to repay the initial renovation investments, becomes increasingly popular. However, most Energy Service Companies (ESCOs) set the savings guarantee roughly based on their previous experience, which leads to inaccurate estimates in practice. This paper has built the stochastic models for the savings risks both from the energy price volatility and the facility performance instability, which follow the Geometric Brownian Motions (GBM) and Ito's lemma. Then, a flexible guarantee designing method for ESCOs is developed to minimize the financial risks and a case study has been conducted to show the application. Finally, suggestions have been made for how ESCOs set the guarantee and the extra profit sharing proportion in contracts based on the existing information. This method will help them appropriately allocate risks with successful contract negotiation.