A. James Clark School of Engineering

Permanent URI for this communityhttp://hdl.handle.net/1903/1654

The collections in this community comprise faculty research works, as well as graduate theses and dissertations.

Browse

Search Results

Now showing 1 - 4 of 4
  • Thumbnail Image
    Item
    Achievable Rates, Optimal Signalling Schemes and Resource Allocation for Fading Wireless Channels
    (2005-08-04) Kaya, Onur; Ulukus, Sennur; Electrical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    The proliferation of services involving the transmission of high rate data traffic over wireless channels makes it essential to overcome the detrimental effects of the wireless medium, such as fading and multiuser interference. This thesis is devoted to obtaining optimal resource allocation policies which exploit the transmitters' and receiver's knowledge about the fading to the network's advantage, to attain information theoretic capacity limits of fading wireless channels. The major focus of the thesis is on capacity results for fading code division multiple access (CDMA) channels, which have proved to be a robust way of combatting the multiuser interference in practical wireless networks. For these channels, we obtain the capacity region achievable with power control, as well as the power control policies that achieve the desired rate points on the capacity region. We provide practical one-user-at-a-time iterative algorithms to compute the optimal power distributions as functions of the fading. For the special case of sum capacity, some properties of the optimal policy, such as the number of simultaneously transmitting users, are obtained. We also investigate the effects of limited feedback on the capacity, and demonstrate that very coarse channel state information (CSI) is sufficient to benefit from power control as a means of increasing the capacity. The selection of the signature sequences also plays an important role in determining the capacity of CDMA systems. This thesis addresses the problem of jointly optimizing the signature sequences and power levels to maximize the sum capacity. The resulting policies are shown to be simple, consisting of orthogonal transmissions in time or signal space, and requiring only local CSI. We also provide an iterative way of updating the joint resource allocation policy, and extend our results to asynchronous, and multi-antenna CDMA systems. Rather than treating the received signal at the transmitters as interference, it is possible to treat it as free side information and use it for cooperation. The final part of the thesis provides power allocation policies for a fading Gaussian multiple access channel with user cooperation, which maximize the rates achievable by block Markov superposition coding, and also simplify the coding strategy.
  • Thumbnail Image
    Item
    Cross-Layer Resource Allocation Protocols for Multimedia CDMA Networks
    (2004-11-11) Kwasinski, Andres; Farvardin, Nariman; Electrical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    The design of mechanisms to efficiently allow many users to maintain simultaneous communications while sharing the same transmission medium is a crucial step during a wireless network design. The resource allocation process needs to meet numerous requirements that are sometimes conflicting, such as high efficiency, network utilization and flexibility and good communication quality. Due to limited resources, wireless cellular networks are normally seen as having some limit on the network capacity, in terms of the maximum number of calls that may be supported. Being able to dynamically extend network operation beyond the set limit at the cost of a smooth and small increase in distortion is a valuable and useful idea because it provides the means to flexibly adjust the network to situations where it is more important to service a call rather than to guarantee the best quality. In this thesis we study designs for resource allocation in CDMA networks carrying conversational-type calls. The designs are based on a cross-layer approach where the source encoder, the channel encoder and, in some cases, the processing gains are adapted. The primary focus of the study is on optimally multiplexing multimedia sources. Therefore, we study optimal resource allocation to resolve interference-generated congestion for an arbitrary set of real-time variable-rate source encoders in a multimedia CDMA network. Importantly, we show that the problem could be viewed as the one of statistical multiplexing in source-adapted multimedia CDMA. We present analysis and optimal solutions for different system setups. The result is a flexible system that sets an efficient tradeoff between end-to-end distortion and number of users. Because in the presented cross-layer designs channel-induced errors are kept at a subjectively acceptable level, the proposed designs are able to outperform equivalent CDMA systems where capacity is increased in the traditional way, by allowing a reduction in SINR. An important application and part of this study, is the use of the proposed designs to extend operation of the CDMA network beyond a defined congestion operating point. Also, the general framework for statistical multiplexing in CDMA is used to study some issues in integrated real-time/data networks.
  • Thumbnail Image
    Item
    Physical layer issues and cross-layer design in wireless networks
    (2004-09-27) Li, Yun; Ephremides, Anthony; Electrical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Comparing to wired networks, wireless networks have some special features in the physical layer, medium access control (MAC) layer, and the network layer. This work discusses several research topics in the physical layer, and studies the cross-layer design of wireless networks. First, we consider a Code-division multiple-access (CDMA) system with multiuser detection when the presence of a subset of the users is unknown to the receiver. The performance of the system in terms of Signal-to-Interference and noise-Ratio (SIR) and user capacity is given, by assuming symmetric signals. Then, we study the power control problem with multiple flow types. Each node has multiple flow types requiring different QoS, (for example in a multimedia system,) and has the constraint of using the same power level for all of the flow types. The conditions for solution to exist are given; and the characteristics of the solution are provided. Next, we propose a passive rate adaptation, in which some bits are dropped at the receiver end of a link, for the ad hoc network to use in the temporary channel fluctuation. We study the performance of this passive rate control scheme in terms of both symbol error probability and mean square distortion. Finally, we study the coupling between layers of the network structure, and the cross-layer design. We explore the coupling between the physical layer and the MAC sublayer first, and propose the scheduling algorithm with power control. Then we consider the coupling between MAC sublayer and the network layer, and propose the joint scheduling and routing algorithm. The simulation results demonstrate that the joint algorithm improves the performance significantly.
  • Thumbnail Image
    Item
    Private Communications with Chaotic Code Division Multiple Access: Performance Analysis and System Design
    (2004-08-04) Hwang, Yeong-Sun; Papadopoulos, Haralabos C; Electrical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    In this dissertation we develop a class of pseudochaotic direct-sequence code division multiple access (DS/CDMA) systems that can provide private and reliable communication over wireless channels. These systems exploit the sensitive dependence of chaotic sequences on initial conditions together with the presence of channel noise to provide a substantial gap between the bit error probabilities achievable by intended and unintended receivers. We illustrate how a desired level of private communication can be achieved with a systematic selection of the system parameters. This type of privacy can be readily combined with traditional encryption methods to further ensure the protection of information against eavesdroppers. The systems we propose employ linear modulation of each user's symbol stream on a spreading sequence generated by iterating a distinct initial condition through a pseudochaotic map. We evaluate and compare the uncoded probability of error (Pr(e)) achievable by intended receivers that know the initial condition used to generate the spreading sequence to the associated Pr(e) of unintended receivers that know the modulation scheme but not the initial condition. We identify the map attributes that affect privacy, and construct algorithmic design methods for generating pseudochaotic spreading sequences that successively and substantially degrade the unintended user performance, while yielding intended user performance similar to that of conventional DS/CDMA systems. We develop efficient metrics for quantifying the unintended receiver Pr(e) and prove that it decays at a constant rate of 1/sqrt(SNR) in AWGN and fading channels. In addition, we show that this decaying rate is independent of the available degrees of diversity in fading channels, showing in the process that only intended receivers can harvest the available diversity benefits. Moreover, we illustrate that the pseudochaotic DS/CDMA systems can provide reliable multiuser communication that is inherently resilient to eavesdropping, even in the worst-case scenarios where all receivers in a network except the intended one collude to better eavesdrop on the targeted transmission. We also develop optimized digital implementation methods for generating practical pseudochaotic spreading sequences that preserve the privacy characteristics associated with the underlying chaotic spreading sequences.