A. James Clark School of Engineering
Permanent URI for this communityhttp://hdl.handle.net/1903/1654
The collections in this community comprise faculty research works, as well as graduate theses and dissertations.
Browse
3905 results
Search Results
Item Feedback motion replanning during high-stakes scenario(2019) M Jaffar, Mohamed Khalid; Otte, MichaelThis paper proposes a novel algorithm for a quadrotor to replan its motion in the event of one, two or three rotor loss. Further, during the course of its replanned trajectory, the MAV avoids collision with static obstacles including the ground.Item Battery Studies with Particular Reference to Organic Depolarizers(1955) Monson, William L.; Huff, W. J.; Chemical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, MD)Since Volta's invention of the first primary cell, using silver and zinc, numerous other cell combinations have been studied, covering a wide variety of anode and cathode materials. The latter have included both inorganic and organic substances capable of electrochemical reduction, although, historically, organic cathode materials have received very much less attention than the inorganic. It was the purpose of this investigation to study the actual behavior of a selected number of quinones as depolarizers in primary cells. Performance of experimental cells was compared with cells of the usual dry cell composition but of the same size and construction as cells of experimental composition. The results show that certain substituted anthraquinones possess good depolarizing ability as measured by discharge voltage and coulombic capacity. Energy output in some cases was higher than that of the manganese dioxide control cells (zinc anodes in all cases) because of higher effective coulombic capacities. A qualitative study of the effect of substituents on the discharge voltages of various quinones showed that cell working voltages were much more sensitive to quinone substitution than were the calculated reversible potentials. Also, in the case of nitro-substituted anthraquinones more coulombic capacity was obtained than could be accounted for by the simple reduction to the corresponding hydroquinone. The possibility of a reduction of the nitro-group of this compound was considered. Substances investigated were benzoquinone, naphthoquinone, anthraquinone, and certain of their derivatives, using various electrolytes. The size of the experimental cells was such that about 0.2 gram of the various depolarizers could be studied conveniently.Item Hinge-Bill Orientation Techniques for Automated Oyster Processing(1977) Gird, John; Wheaton, F.W.; Bioengineering; Digital Repository at the University of Maryland; University of Maryland (College Park, MD)The width and thickness dimensions of oysters and an inclined V-shaped trough were studied as means for achieving end orientation. Two series of experiments were conducted on 2,430 oysters sampled from three different locations in the Chesapeake Bay. Both width and thickness were measured every 0.2 inch along the oyster length from the hinge to the bill end. A width to thickness ratio was found to be the best dimensional combination for distinguishing between the hinge and bill ends. Less than 0.50 percent of all oysters failed the ratio test conditions. Statistical analysis on five width to thickness ratio tests with failure rates between 0.25 and 0.49 percent showed there to be no differences in the percent oyster failure over all bars and across all tests. Results indicate that comparable oyster orienting efficiencies can be attained by width to thickness ratios with orienting points located 0.4 to 1.0 inches in from the oyster ends. Negative results occurred when an inclined V-shaped trough was used for orienting oysters. There were significant differences in the proportion of hinge and bill leading oysters exiting the trough for each trough loading position over all bars and oyster axes. The tendency for the oyster axes to behave differently explained some of the differences in the trough's orienting efficiency. However, there were no significant relationships between orienting efficiency and oyster axes.Item Microwave Nonlinearities in Photodiodes(1994) Williams, Keith Jake; Dagenais, Mario; Electrical & Computer Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, MD)The nonlinearities in p-i-n photodiodes have been measured and numerically modeled. Harmonic distortion, response reduction, and sinusoidal output distortion measurements were made with two singlefrequency offset-phased-locked Nd: YAG lasers, which provided a source dynamic range greater than 130 dB, a 1 MHz to 50 GHz frequency range, and optical powers up to 10 mW. A semi-classical approach was used to solve the carrier transport in a one-dimensional p-i-n photodiode structure. This required the simultaneous solution of three coupled nonlinear differential equations: Poisson's equation and the hole and electron continuity equations. Space-charge electric fields, loading in the external circuit, and absorption in undepleted regions next to the intrinsic region all contributed to the nonlinear behavior described by these equations. Numerical simulations were performed to investigate and isolate the various nonlinear mechanisms. It was found that for intrinsic region electric fields below 50 kV/cm, the nonlinearities were influenced primarily by the space-charge electric-field-induced change in hole and electron velocities. Between 50 and 100kV/cm, the nonlinearities were found to be influenced primarily by changes in electron velocity for frequencies above 5 GHz and by p-region absorption below 1 GHz. Above 100 kV/cm, only p-region absorption could explain the observed nonlinear behavior, where only 8 to 14 nm of undepleted absorbing material next to the intrinsic region was necessary to model the observed second harmonic distortions of -60 dBc at 1 mA. Simulations were performed at high power densities to explain the observed response reductions and time distortions. A radially inward component of electron velocity was discovered, and under certain conditions, was estimated to have the same magnitude as the axial velocity. The model was extended to predict that maximum photodiode currents of 50 mA should be possible before a sharp increase in nonlinear output occurs. For capacitively-limited devices, the space-charge-induced nonlinearities were found to be independent of the intrinsic region length, while external circuit loading was determined to cause higher nonlinearities in shorter devices. Simulations indicate that second harmonic improvements of 40 to 60 dB may be possible if the photodiode can be fabricated without undepleted absorbing regions next to the intrinsic region.Item Simplified Reflection Fabry-Perot Method for Determination of Electro-Optic Coefficients of Poled Polymer Thin Films(MDPI, 2011-08-18) Park, Dong Hun; Luo, Jingdong; Jen, Alex K.-Y.; Herman, Warren N.We report a simplified reflection mode Fabry-Perot interferometry method for determination of electro-optic (EO) coefficients of poled polymer thin films. Rather than fitting the detailed shape of the Fabry-Perot resonance curve, our simplification involves a technique to experimentally determine the voltage-induced shift in the angular position of the resonance minimum. Rigorous analysis based on optical properties of individual layers of the multilayer structure is not necessary in the data analysis. Although angle scans are involved, the experimental setup does not require a θ-2θ rotation stage and the simplified analysis is an advantage for polymer synthetic efforts requiring quick and reliable screening of new materials. Numerical and experimental results show that our proposed method can determine EO coefficients to within an error of ∼8% if poled values for the refractive indices are used.Item The Hardness and Strength Properties of WC-Co Composites(MDPI, 2011-07-14) Armstrong, Ronald W.The industrially-important WC-Co composite materials provide a useful, albeit complicated materials system for understanding the combined influences on hardness and strength properties of the constituent WC particle strengths, the particle sizes, their contiguities, and of Co binder hardness and mean free paths, and in total, the volume fraction of constituents. A connection is made here between the composite material properties, especially including the material fracture toughness, and the several materials-type considerations of: (1) related hardness stress-strain behaviors; (2) dislocation (viscoplastic) thermal activation characterizations; (3) Hall-Petch type reciprocal square root of particle or grain size dependencies; and (4) indentation and conventional fracture mechanics results. Related behaviors of MgO and Al2O3 crystal and polycrystal materials are also described for the purpose of making comparisons.Item Measurements of True Leak Rates of MEMS Packages(MDPI, 2012-03-06) Han, BongtaeGas transport mechanisms that characterize the hermetic behavior of MEMS packages are fundamentally different depending upon which sealing materials are used in the packages. In metallic seals, gas transport occurs through a few nanoscale leak channels (gas conduction) that are produced randomly during the solder reflow process, while gas transport in polymeric seals occurs through the bulk material (gas diffusion). In this review article, the techniques to measure true leak rates of MEMS packages with the two sealing materials are described and discussed: a Helium mass spectrometer based technique for metallic sealing and a gas diffusion based model for polymeric sealing.Item Decomposition Mechanisms and Kinetics of Novel Energetic Molecules BNFF-1 and ANFF-1: Quantum-Chemical Modeling(MDPI, 2013-07-18) Tsyshevsky, Roman V.; Kuklja, Maija M.Decomposition mechanisms, activation barriers, Arrhenius parameters, and reaction kinetics of the novel explosive compounds, 3,4-bis(4-nitro-1,2,5-oxadiazol-3-yl)-1,2,5-oxadiazole (BNFF-1), and 3-(4-amino-1,2,5-oxadiazol-3-yl)-4-(4-nitro-1,2,5-oxadiazol-3-yl)-1,2,5-oxadiazole (ANFF-1) were explored by means of density functional theory with a range of functionals combined with variational transition state theory. BNFF-1 and ANFF-1 were recently suggested to be good candidates for insensitive high energy density materials. Our modeling reveals that the decomposition initiation in both BNFF-1 and ANFF-1 molecules is triggered by ring cleavage reactions while the further process is defined by a competition between two major pathways, the fast C-NO2 homolysis and slow nitro-nitrite isomerization releasing NO. We discuss insights on design of new energetic materials with targeted properties gained from our modeling.Item Dynamic Modeling for the Design and Cyclic Operation of an Atomic Layer Deposition (ALD) Reactor(MDPI, 2013-08-19) Travis, Curtisha D.; Adomaitis, Raymond A.A laboratory-scale atomic layer deposition (ALD) reactor system model is derived for alumina deposition using trimethylaluminum and water as precursors. Model components describing the precursor thermophysical properties, reactor-scale gas-phase dynamics and surface reaction kinetics derived from absolute reaction rate theory are integrated to simulate the complete reactor system. Limit-cycle solutions defining continuous cyclic ALD reactor operation are computed with a fixed point algorithm based on collocation discretization in time, resulting in an unambiguous definition of film growth-per-cycle (𝑔𝑝𝑐). A key finding of this study is that unintended chemical vapor deposition conditions can mask regions of operation that would otherwise correspond to ideal saturating ALD operation. The use of the simulator for assisting in process design decisions is presented.Item Lessons Learned from the 787 Dreamliner Issue on Lithium-Ion Battery Reliability(MDPI, 2013-09-09) Williard, Nicholas; He, Wei; Hendricks, Christopher; Pecht, MichaelOn 16 January 2013, all Boeing 787 Dreamliners were indefinitely grounded due to lithium-ion battery failures that had occurred in two planes. Subsequent investigations into the battery failures released through the National Transportation Safety Board (NTSB) factual report, the March 15th Boeing press conference in Japan, and the NTSB hearings in Washington D.C., never identified the root causes of the failures—a major concern for ensuring safety and meeting reliability expectations. This paper discusses the challenges to lithium-ion battery qualification, reliability assessment, and safety in light of the Boeing 787 battery failures. New assessment methods and control techniques that can improve battery reliability and safety in avionic systems are then presented.