A. James Clark School of Engineering

Permanent URI for this communityhttp://hdl.handle.net/1903/1654

The collections in this community comprise faculty research works, as well as graduate theses and dissertations.

Browse

Search Results

Now showing 1 - 1 of 1
  • Thumbnail Image
    Item
    Thermal integration of tubular solid oxide fuel cell with catalytic partial oxidation reactor and anode exhaust combustor for small power application
    (2010) Maxey, Christopher; Jackson, Gregory S; Mechanical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    In the current study, a system configuration of a tubular SOFC with a catalytic partial oxidation (CPOx) reactor and an anode exhaust catalytic combustor is explored to test the feasibility of such a system. A system level model was developed to more fully assess system design and operability issues. For the SOFC, a detailed 1-D SOFC determines local current production and is combined with down-the-channel flow models for the SOFC as well as the catalytic combustor/heat exchanger, and CPOx reactor. System model results showed that variations in fuel flow and air to fuel ratio have large impacts on temperature distribution and power out, with lower fuel flows and air-to-fuel ratios providing higher SOFC power densities (~0.64 W/cm2) at high efficiencies (~45%). The system model also shows that external heat loss greatly reduces system power and efficiency but lower air-to-fuel ratios can offset associated temperature and associate performance losses.