A. James Clark School of Engineering
Permanent URI for this communityhttp://hdl.handle.net/1903/1654
The collections in this community comprise faculty research works, as well as graduate theses and dissertations.
Browse
Search Results
Item The Influence of Plastic Barriers on Aerosol Infection Risk during Airport Security Checks(MDPI, 2022-09-08) Zhu, Shengwei; Lin, Tong; Spengler, John D.; Cedeño Laurent, Jose Guillermo; Srebric, JelenaPlastic barriers physically separate queuing passengers in airport security check areas as a measure against aerosol transmission. However, this may create “canyons” that interfere with the existing ventilation design: potentially inhibiting airflow, concentrating exhaled viruses, and exacerbating aerosol transmission risk. Accordingly, this study investigated the transmission implications of installing plastic barriers in a security check area with computational fluid dynamics (CFD). Two air distribution schemes were modeled: one with linear air supply diffusers aligned vertically to (Case 1) and another with diffusers parallel with (Case 2) the orientation of partitions. The drift-flux model was used to calculate the spread of viral bioaerosols with 5 µm in diameter; then the Wells–Riley equation was applied to assess aerosol transmission risk for SARS-CoV-2. According to simulation results, in Case 1, installing plastic barriers resulted in relatively small changes in volume with a high infection risk of 1% or greater in the breathing zone within the first 25 min. However, in Case 2, using plastic barriers resulted in the continuous increase in this volume within the first 25 min while this volume was near zero if without plastic barriers. In conclusion, installing plastic barriers needs careful consideration because they do not reduce the risk of airborne SARS-CoV-2 transmission and might even exacerbate it without localized ventilation and air cleaning.Item Characterization of aerosol plumes from singing and playing wind instruments associated with the risk of airborne virus transmission(Wiley, 2022-06-13) Wang, Lingzhe; Lin, Tong; Da Costa, Hevander; Zhu, Shengwei; Stockman, Tehya; Kumar, Abhishek; Weaver, James; Spede, Mark; Milton, Donald K.; Hertzberg, Jean; Toohey, Darin W.; Vance, Marina E.; Miller, Shelly L.; Srebric, JelenaThe exhalation of aerosols during musical performances or rehearsals posed a risk of airborne virus transmission in the COVID-19 pandemic. Previous research studied aerosol plumes by only focusing on one risk factor, either the source strength or convective transport capability. Furthermore, the source strength was characterized by the aerosol concentration and ignored the airflow rate needed for risk analysis in actual musical performances. This study characterizes aerosol plumes that account for both the source strength and convective transport capability by conducting experiments with 18 human subjects. The source strength was characterized by the source aerosol emission rate, defined as the source aerosol concentration multiplied by the source airflow rate (brass 383 particle/s, singing 408 particle/s, and woodwind 480 particle/s). The convective transport capability was characterized by the plume influence distance, defined as the sum of the horizontal jet length and horizontal instrument length (brass 0.6 m, singing 0.6 m and woodwind 0.8 m). Results indicate that woodwind instruments produced the highest risk with approximately 20% higher source aerosol emission rates and 30% higher plume influence distances compared with the average of the same risk indicators for singing and brass instruments. Interestingly, the clarinet performance produced moderate source aerosol concentrations at the instrument’s bell, but had the highest source aerosol emission rates due to high source airflow rates. Flute performance generated plumes with the lowest source aerosol emission rates but the highest plume influence distances due to the highest source airflow rate. Notably, these comprehensive results show that the source airflow is a critical component of the risk of airborne disease transmission. The effectiveness of masking and bell covering in reducing aerosol transmission is due to the mitigation of both source aerosol concentrations and plume influence distances. This study also found a musician who generated approximately five times more source aerosol concentrations than those of the other musicians who played the same instrument. Despite voice and brass instruments producing measurably lower average risk, it is possible to have an individual musician produce aerosol plumes with high source strength, resulting in enhanced transmission risk; however, our sample size was too small to make generalizable conclusions regarding the broad musician population.