A. James Clark School of Engineering
Permanent URI for this communityhttp://hdl.handle.net/1903/1654
The collections in this community comprise faculty research works, as well as graduate theses and dissertations.
Browse
2 results
Search Results
Item Data-Driven High-Throughput Rational Design of Double-Atom Catalysts for Oxygen Evolution and Reduction(Wiley, 2022-05-18) Wu, Lianping; Guo, Tian; Li, TengSurging interests exist in double-atom catalysts (DACs), which not only inherit the advantages of single-atom catalysts (SACs) (e.g., ultimate atomic utilization, high activity, and selectivity) but also overcome the drawbacks of SACs (e.g., low loading and isolated active site). The design of DACs, however, remains cost-prohibitive for both experimental and computational studies, due to their huge design space. Herein, by means of density functional theory (DFT) and topological information-based machine-learning (ML) algorithms, we present a data-driven high-throughput design principle to evaluate the stability and activity of 16 767 DACs for oxygen evolution (OER) and oxygen reduction (ORR) reactions. The rational design reveals 511 types of DACs with OER activity superior to IrO2 (110), 855 types of DACs with ORR activity superior to Pt (111), and 248 bifunctional DACs with high catalytic performance for both OER and ORR. An intrinsic descriptor is revealed to correlate the catalytic activity of a DAC with the electronic structures of the DAC and its bonding carbon surface structure. This data-driven high-throughput approach not only yields remarkable prediction precision (>0.926 R-squared) but also enables a notable 144 000-fold reduction of screening time compared with pure DFT calculations, holding promise to drastically accelerate the design of high-performance DACs.Item Ultrafast nano-oscillators based on interlayerbridged carbon nanoscrolls(2011-07-25) Zhang, Zhao; Li, TengWe demonstrate a viable approach to fabricating ultrafast axial nano-oscillators based on carbon nanoscrolls (CNSs) using molecular dynamics simulations. Initiated by a single-walled carbon nanotube (CNT), a monolayer graphene can continuously scroll into a CNS with the CNT housed inside. The CNT inside the CNS can oscillate along axial direction at a natural frequency of tens of gigahertz. We demonstrate an effective strategy to reduce the dissipation of the CNS-based nano-oscillator by covalently bridging the carbon layers in the CNS. We further demonstrate that such a CNS-based nano-oscillator can be excited and driven by an external AC electric field, and oscillate at more than 100 GHz. The CNS-based nano-oscillators not only offer a feasible pathway toward ultrafast nano-devices but also hold promise to enable nanoscale energy transduction, harnessing, and storage (e.g., from electric to mechanical).