A. James Clark School of Engineering
Permanent URI for this communityhttp://hdl.handle.net/1903/1654
The collections in this community comprise faculty research works, as well as graduate theses and dissertations.
Browse
Search Results
Item Evaluation of the Ability of Fire Dynamic Simulator to Simulate Positive Pressure Ventilation in the Laboratory and Practical Scenarios(2005-12-13) Kerber, Steve Ira Newton; Milke, James A; Fire Protection Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Positive Pressure Ventilation (PPV) is a tactic that is used on fire grounds across the world everyday, both to improve tenability after the extinguishment of a fire and/or offensively during fire attack to improve firefighting conditions. PPV has proven that it can be a useful tool on the fire ground, but it can also kill or injure fire fighters and civilians if used improperly. Data from three full-scale experiments are compared with simulations completed with the computational fluid dynamic model Fire Dynamic Simulator (FDS). The full-scale experiments characterize a Positive Pressure Ventilation (PPV) fan in an open atmosphere, in a simple room geometry and in a room fire. All experiments qualify and quantify the comparison of the experimental results with the FDS results. A concluding scenario is modeled utilizing the calibration of the full-scale experiments to examine the effects of PPV on a fire in a two-story, colonial style house.