A. James Clark School of Engineering

Permanent URI for this communityhttp://hdl.handle.net/1903/1654

The collections in this community comprise faculty research works, as well as graduate theses and dissertations.

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Motion of an Elastic Capsule in a Trapezoidal Microchannel under Stokes Flow Conditions
    (MDPI, 2020-05-17) Koolivand, Abdollah; Dimitrakopoulos, Panagiotis
    Even though the research interest in the last decades has been mainly focused on the capsule dynamics in cylindrical or rectangular ducts, channels with asymmetric cross-sections may also be desirable especially for capsule migration and sorting. Therefore, in the present study we investigate computationally the motion of an elastic spherical capsule in an isosceles trapezoidal microchannel at low and moderate flow rates under the Stokes regime. The steady-state capsule location is quite close to the location where the single-phase velocity of the surrounding fluid is maximized. Owing to the asymmetry of the trapezoidal channel, the capsule’s steady-state shape is asymmetric while its membrane slowly tank-treads. In addition, our investigation reveals that tall trapezoidal channels with low base ratios produce significant off-center migration for large capsules compared to that for smaller capsules for a given channel length. Thus, we propose a microdevice for the sorting of artificial and physiological capsules based on their size, by utilizing tall trapezoidal microchannels with low base ratios. The proposed sorting microdevice can be readily produced via glass fabrication or as a microfluidic device via micromilling, while the required flow conditions do not cause membrane rupture.
  • Thumbnail Image
    Item
    Capsule Migration and Deformation in a Converging Micro-Capillary
    (MDPI, 2021-03-03) Wang, Yiyang; Dimitrakopoulos, Panagiotis
    The lateral migration of elastic capsules towards a microchannel centerline plays a major role in industrial and physiological processes. Via our computational investigation, we show that a constriction connecting two straight microchannels facilitates the lateral capsule migration considerably, which is relatively slow in straight channels. Our work reveals that the significant cross-streamline migration inside the constriction is dominated by the strong hydrodynamic forces due to the capsule size. However, in the downstream straight channel, the increased interfacial deformation at higher capillary numbers or a lower viscosity ratio and lower membrane hardness results in increased lateral cross-streamline migration. Thus, our work highlights the different migration mechanisms occurring over curved and straight streamlines.