A. James Clark School of Engineering
Permanent URI for this communityhttp://hdl.handle.net/1903/1654
The collections in this community comprise faculty research works, as well as graduate theses and dissertations.
Browse
2 results
Search Results
Item Formation of Drug-Participating Catanionic Aggregates for Extended Delivery of Non-Steroidal Anti-Inflammatory Drugs from Contact Lenses(MDPI, 2019-10-10) Torres-Luna, Cesar; Koolivand, Abdollah; Fan, Xin; Agrawal, Niti R.; Hu, Naiping; Zhu, Yuli; Domszy, Roman; Briber, Robert M.; Wang, Nam Sun; Yang, ArthurThis paper focuses on extending drug release duration from contact lenses by incorporating catanionic aggregates. The aggregates consist of a long-chain cationic surfactant, i.e., cetalkonium chloride (CKC), and an oppositely charged anti-inflammatory amphiphilic drug. We studied three non-steroidal anti-inflammatory (NSAID) drugs with different octanol–water partition coefficients; diclofenac sodium (DFNa), flurbiprofen sodium (FBNa), and naproxen sodium (NPNa). Confirmation of catanionic aggregate formation in solution was determined by steady and dynamic shear rheology measurements. We observed the increased viscosity, shear thinning, and viscoelastic behavior characteristic of wormlike micelles; the rheological data are reasonably well described using a Maxwellian fluid model with a single relaxation time. In vitro release experiments demonstrated that the extension in the drug release time is dependent on the ability of a drug to form viscoelastic catanionic aggregates. Such aggregates retard the diffusive transport of drug molecules from the contact lenses. Our study revealed that the release kinetics depends on the CKC concentration and the alkyl chain length of the cationic surfactant. We demonstrated that more hydrophobic drugs such as diclofenac sodium show a more extended release than less hydrophobic drugs such as naproxen sodium.Item Effect of Carbon Chain Length, Ionic Strength, and pH on the In Vitro Release Kinetics of Cationic Drugs from Fatty-Acid-Loaded Contact Lenses(MDPI, 2021-07-10) Torres-Luna, Cesar; Hu, Naiping; Domszy, Roman; Fan, Xin; Yang, Jeff; Briber, Robert M.; Wang, Nam Sun; Yang, ArthurThis paper explores the use of fatty acids in silicone hydrogel contact lenses for extending the release duration of cationic drugs. Drug release kinetics was dependent on the carbon chain length of the fatty acid loaded in the lens, with 12-, 14- and 18-carbon chain length fatty acids increasing the uptake and the release duration of ketotifen fumarate (KTF) and tetracaine hydrochloride (THCL). Drug release kinetics from oleic acid-loaded lenses was evaluated in phosphate buffer saline (PBS) at different ionic strengths (I = 167, 500, 1665 mM); the release duration of KTF and THCL was decreased with increasing ionic strength of the release medium. Furthermore, the release of KTF and THCL in deionized water did not show a burst and was significantly slower compared to that in PBS. The release kinetics of KTF and THCL was significantly faster when the pH of the release medium was decreased from 7.4 towards 5.5 because of the decrease in the relative amounts of oleate anions in the lens mostly populated at the polymer–pore interfaces. The use of boundary charges at the polymer–pore interfaces of a contact lens to enhance drug partition and extend its release is further confirmed by loading cationic phytosphingosine in contact lenses to attract an anionic drug.