A. James Clark School of Engineering
Permanent URI for this communityhttp://hdl.handle.net/1903/1654
The collections in this community comprise faculty research works, as well as graduate theses and dissertations.
Browse
2 results
Search Results
Item Cell-Like Capsules with “Smart” Compartments(Wiley, 2023-03-09) Ahn, So Hyun; Borden, Leah K.; Bentley, William E.; Raghavan, Srinivasa R.Eukaryotic cells have inner compartments (organelles), each with distinct properties and functions. One mimic of this architecture, based on biopolymers, is the multicompartment capsule (MCC). Here, MCCs in which the inner compartments are chemically unique and “smart,” i.e., responsive to distinct stimuli in an orthogonal manner are created. Specifically, one compartment alone is induced to degrade when the MCC is contacted with an enzyme while other compartments remain unaffected. Similarly, just one compartment gets degraded upon contact with reactive oxygen species generated from hydrogen peroxide (H2O2). And thirdly, one compartment alone is degraded by an external, physical stimulus, namely, by irradiating the MCC with ultraviolet (UV) light. All these specific responses are achieved without resorting to complicated chemistry to create the compartments: the multivalent cation used to crosslink the biopolymer alginate (Alg) is simply altered. Compartments of Alg crosslinked by Ca2+ are shown to be sensitive to enzymes (alginate lyases) but not to H2O2 or UV, whereas the reverse is the case with Alg/Fe3+ compartments. These results imply the ability to selectively burst open a compartment in an MCC “on-demand” (i.e., as and when needed) and using biologically relevant stimuli. The results are then extended to a sequential degradation, where compartments in an MCC are degraded one after another, leaving behind an empty MCC lumen. Collectively, this work advances the MCC as a platform that not only emulates key features of cellular architecture, but can also begin to capture rudimentary cell-like behaviors.Item Biomimetic Polymer Capsules: Novel Architecture and Properties(2021) Ahn, So Hyun; Raghavan, Srinivasa R.; Bentley, William E.; Chemical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)This study focuses on polymer capsules made from biocompatible, water-soluble polymers. Typically, the capsule core is a hydrogel in which proteins, nanoparticles, or biological cells can be encapsulated, while the capsule shell is permeable to small, but not large molecules. We explore two new designs or architectures for such capsules. One is a multi-compartment capsule (MCC) where a capsule has several distinct compartments inside it. A second design is a multilayer capsule, where concentric layers of different chemistries surround a core. These new designs mimic structures commonly found in nature such as a eukaryotic cell or an onion. Our goal is to exploit these novel capsule architectures to achieve new or improved properties. In our first study, we introduce a new kind of multilayer capsule, wherein a protective shell of covalently crosslinked polymer (acrylate) surrounds a core formed by physical crosslinking (alginate). Alginate capsules are widely used for cell-encapsulation, but they are quite weak. We show that a covalent acrylate shell can be added to these capsules in a single step under mild conditions. The shell protects the core from degradation while allowing the encapsulated cells to remain viable and functional. A variation of the synthesis technique yields capsules with two concentric shells (alginate, then acrylate) surrounding a liquid core. Next, we create MCCs in which microbes from two different kingdoms, i.e., bacteria (Pseudomonas aeruginosa) and fungi (Candida albicans), are placed next to each other in distinct inner compartments. This MCC platform holds advantages over traditional co-culture as it eliminates physical contact between the two microbes and allows for real-time monitoring of cell growth in 3D. Using this platform, we study the effects of both physical variables (e.g., pH) as well as chemical additives (e.g., surfactants) on the growth of the two populations. We also detect crosstalk between the bacteria and fungi, i.e., as the bacteria grow, they inhibit the formation of hyphal filaments by the fungi, which make the fungi less invasive. Lastly, we create MCCs with ‘smart’ inner compartments, which are sensitive to various stimuli. An analogy is drawn to different organelles in a cell, which have different constituents and unique functions. We select the chemistry or architecture of each inner compartment of the MCC such that their responses are distinct and orthogonal. For example, one compartment alone breaks apart when the MCC is contacted with an enzyme, while another gets degraded by the introduction of hydrogen peroxide (H2O2), and a third is disrupted by ultraviolet (UV) light. Another concept is shown where the degradation of one compartment induces the degradation of another. We believe these new designs will make the MCC platform more attractive for various biological applications.