Mechanical Engineering

Permanent URI for this communityhttp://hdl.handle.net/1903/2263

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Item
    Big Machinery Data Preprocessing Methodology for Data-Driven Models in Prognostics and Health Management
    (MDPI, 2021-10-14) Cofre-Martel, Sergio; Lopez Droguett, Enrique; Modarres, Mohammad
    Sensor monitoring networks and advances in big data analytics have guided the reliability engineering landscape to a new era of big machinery data. Low-cost sensors, along with the evolution of the internet of things and industry 4.0, have resulted in rich databases that can be analyzed through prognostics and health management (PHM) frameworks. Several data-driven models (DDMs) have been proposed and applied for diagnostics and prognostics purposes in complex systems. However, many of these models are developed using simulated or experimental data sets, and there is still a knowledge gap for applications in real operating systems. Furthermore, little attention has been given to the required data preprocessing steps compared to the training processes of these DDMs. Up to date, research works do not follow a formal and consistent data preprocessing guideline for PHM applications. This paper presents a comprehensive step-by-step pipeline for the preprocessing of monitoring data from complex systems aimed for DDMs. The importance of expert knowledge is discussed in the context of data selection and label generation. Two case studies are presented for validation, with the end goal of creating clean data sets with healthy and unhealthy labels that are then used to train machinery health state classifiers.
  • Thumbnail Image
    Item
    COST-EFFECTIVE PROGNOSTICS AND HEALTH MONITORING OF LOCALLY DAMAGED PIPELINES WITH HIGH CONFIDENCE LEVEL
    (2020) Aria, Amin; Modarres, Mohammad; Azarm, Shapour; Mechanical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Localized pipeline damages, caused by degradation processes such as corrosion, are prominent, can result in pipeline failure and are expensive to monitor. To prevent pipeline failure, many Prognostics and Health Monitoring (PHM) approaches have been developed in which sensor network for online, and human inspection for offline data gathering are separately used. In this dissertation, a two-level (segment- and integrated-level) PHM approach for locally damaged pipelines is proposed where both of these degradation data gathering schemes (i.e., detection methods) are considered simultaneously. The segment-level approach, in which the damage behavior is considered to be uniform, consists of a static and a dynamic phase. In the static phase, a new optimization problem for the health monitoring layout design of locally damaged pipelines is formulated. The solution to this problem is an optimal configuration (or layout) of degradation detection methods with a minimized health monitoring cost and a maximized likelihood of damage detection. In the dynamic phase, considering the optimal layout, an online fusion of high-frequency sensors data and low-frequency inspection information is conducted to estimate and then update the pipeline’s Remaining Useful Life (RUL) estimate. Subsequently, the segment-level optimization formulation is modified to improve its scalability and facilitate updating layouts considering the online RUL estimates. Finally, at the integrated-level, the modified segment-level approach is used along with Stochastic Dynamic Programming (SDP) to produce an optimal set of layouts for a long pipeline consisting of multiple segments with different damage behavior. Experimental data and several notional examples are used to demonstrate the performance of the proposed approaches. Synthetically generated damage data are used in two examples to demonstrate that the proposed segment-level layout optimization approach results in a more robust solution compared to single detection approaches and deterministic methods. For the dynamic segment-level phase, acoustic emission sensor signals and microscopic images from a set of fatigue crack experiments are considered to show that combining sensor- and image-based damage size estimates leads to accuracy improvements in RUL estimation. Lastly, using synthetically generated damage data for three hypothetical pipeline segments, it is shown that the constructed integrated-level approach provides an optimal set of layouts for several pipeline segments.
  • Thumbnail Image
    Item
    DATA-DRIVEN STUDIES OF TRANSIENT EVENTS AND APERIODIC MOTIONS
    (2019) Wang, Rui; Balachandran, Balakumar; Mechanical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    The era of big data, high-performance computing, and machine learning has witnessed a paradigm shift from physics-based modeling to data-driven modeling across many scientific fields. In this dissertation work, transient events and aperiodic motions of complex nonlinear dynamical system are studied with the aid of a data- driven modeling approach. The goal of the work has been to further the ability for future behavior prediction, state estimation, and control of related behaviors. It is shown that data on extreme waves can be used to carry out stability analysis and ascertain the nature of the transient phenomenon. In addition, it is demonstrated that a low number of soliton elements can be used to realize a rogue wave on the basis of nonlinear interactions amongst the basic elements. The pro- posed nonlinear phase interference model provides an appealing explanation for the formation of ocean extreme wave and related statistics, and a superior reconstruction of the Draupner wave event than that obtained on the basis of linear superposition. Chaotic data, another manifestation of aperiodic motions, which are obtained from prototypical ordinary differential and partial differential systems are considered and a neural machine is realized to predict the corresponding responses based on a limited training set as well to forecast the system behavior. A specific neural architecture, called the inhibitor mechanism, has been designed to enable chaotic time series forecasting. Without this mechanism, even the short-term predictions would be intractable. Both autonomous and non-autonomous dynamical systems have been studied to demonstrate the long-term forecasting possibilities with the de- veloped neural machine. For each dynamical system considered in this dissertation, a long forecasting horizon is achieved with a short historical data set. Furthermore, with the developed neural machine, one can relax the requirement of continuous historical data measurements, thus, providing for a more pragmatic approach than the previous approaches available in the literature. It is expected that the efforts of this dissertation work will lead to a better understanding of the underlying mechanism of transient and aperiodic events in complex systems and useful techniques for forecasting their future occurrences.