Mechanical Engineering
Permanent URI for this communityhttp://hdl.handle.net/1903/2263
Browse
2 results
Search Results
Item Towards the Use of Dielectric Elastomer Actuators as Locomotive Devices for Millimeter-Scale Robots(2012) Pearse, Justin Daminabo; Smela, Elisabeth; Mechanical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Dielectric elastomer actuators (DEAs) are electromechanical transducers that are promising for small scale applications. The work presented in this thesis seeks to develop DEAs as an actuation technology that would serve the purpose of ambulating millimeter-scale robots in a robust and predictable manner. To begin, the "planar" DEA configuration was characterized and the performances of various elastomers were investigated. Then, based on the requirements of a proposed robot walking gait, two principles were examined as means of converting in-plane actuation strain to bending actuation. Bending DEAs were fabricated and tested, and a maximum end displacement of 1.5 mm was achieved for a 10 mm long sample. Bending actuator design was optimized by maximizing both speed and payload capabilities. Finally, some challenges facing the design of robots ambulated by DEAs were outlined; of particular note is the DEAs' electrostatic interaction with each other and their surroundings.Item COMPARISON OF INTERCONNECT FAILURES OF ELECTRONIC COMPONENTS MOUNTED ON FR-4 BOARDS WITH SN37PB AND SN3.0AG0.5CU SOLDERS UNDER RAPID LOADING CONDITIONS.(2010) Gregory, Patrice Belnora; Barker, Donald B; Mechanical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Electronic circuit boards can experience rapid loading through shock or vibration events during their lives; these events can happen in transportation, manufacture, or in field conditions. Due to the lead-free migration, it is necessary to evaluate how this rapid loading affects the durability of a leading lead free solder alternative (Sn3.0Ag0.5Cu) assemblies as compared with traditional eutectic lead based solder Sn37Pb assemblies. A literature review showed that there is little agreement on the fatigue behavior of Sn37Pb solder assemblies and Sn3.0Ag0.5Cu solder assemblies subjected to rapid loading. To evaluate the failure behavior of Sn37Pb and Sn3.0Ag0.5Cu solder assemblies under rapid loading conditions, leadless chip resistors (LCR), ball grid arrays (BGA), small outline integrated circuits (SOIC), and small outline transistors (SOT) were subjected to four point bend tests via a servo-hydraulic testing machine at printed wiring board (PWB) strain rates greater than 0.1/s. The PWB strain was the metric used to evaluate the failures. The PBGAs and LCRs were examined with both Sn37Pb and Sn3.0Ag0.5Cu solders. There was no significant difference found in the resulting test data for the behavior of the two solder assembly types in the high cycle fatigue regime. PBGA assemblies with both solders were also evaluated at a higher strain rate, approximately 1/s, using drop testing. There was no discernable difference found between the assemblies as well as no difference in the failure rate of the PBGAs at this higher strain rate. The PWB strain was converted to an equivalent solder stress index using finite element analysis. This equivalent stress index value was used to compare the results from the LCR and BGA testing for Sn37Pb and Sn3.0Ag0.5Cu. Independently generated BGA data that differed with respect to many testing variables was adjusted and incorporated to this comparison. The resulting plot did not show any significant differences between the behaviors of the two solder assemblies under rapid loading outside of the ultra low cycle fatigue regime, where the assemblies with Sn37Pb solder outperformed the assemblies with SnAgCu solder.