Mechanical Engineering
Permanent URI for this communityhttp://hdl.handle.net/1903/2263
Browse
613 results
Search Results
Item The Hardness and Strength Properties of WC-Co Composites(MDPI, 2011-07-14) Armstrong, Ronald W.The industrially-important WC-Co composite materials provide a useful, albeit complicated materials system for understanding the combined influences on hardness and strength properties of the constituent WC particle strengths, the particle sizes, their contiguities, and of Co binder hardness and mean free paths, and in total, the volume fraction of constituents. A connection is made here between the composite material properties, especially including the material fracture toughness, and the several materials-type considerations of: (1) related hardness stress-strain behaviors; (2) dislocation (viscoplastic) thermal activation characterizations; (3) Hall-Petch type reciprocal square root of particle or grain size dependencies; and (4) indentation and conventional fracture mechanics results. Related behaviors of MgO and Al2O3 crystal and polycrystal materials are also described for the purpose of making comparisons.Item Measurements of True Leak Rates of MEMS Packages(MDPI, 2012-03-06) Han, BongtaeGas transport mechanisms that characterize the hermetic behavior of MEMS packages are fundamentally different depending upon which sealing materials are used in the packages. In metallic seals, gas transport occurs through a few nanoscale leak channels (gas conduction) that are produced randomly during the solder reflow process, while gas transport in polymeric seals occurs through the bulk material (gas diffusion). In this review article, the techniques to measure true leak rates of MEMS packages with the two sealing materials are described and discussed: a Helium mass spectrometer based technique for metallic sealing and a gas diffusion based model for polymeric sealing.Item Lessons Learned from the 787 Dreamliner Issue on Lithium-Ion Battery Reliability(MDPI, 2013-09-09) Williard, Nicholas; He, Wei; Hendricks, Christopher; Pecht, MichaelOn 16 January 2013, all Boeing 787 Dreamliners were indefinitely grounded due to lithium-ion battery failures that had occurred in two planes. Subsequent investigations into the battery failures released through the National Transportation Safety Board (NTSB) factual report, the March 15th Boeing press conference in Japan, and the NTSB hearings in Washington D.C., never identified the root causes of the failures—a major concern for ensuring safety and meeting reliability expectations. This paper discusses the challenges to lithium-ion battery qualification, reliability assessment, and safety in light of the Boeing 787 battery failures. New assessment methods and control techniques that can improve battery reliability and safety in avionic systems are then presented.Item Symmetry Aspects of Dislocation-Effected Crystal Properties: Material Strength Levels and X-ray Topographic Imaging(MDPI, 2014-03-20) Armstrong, Ronald W.Several materials science type research topics are described in which advantageous use of crystal symmetry considerations has been helpful in ferreting the essential elements of dislocation behavior in determining material properties or for characterizing crystal/polycrystalline structural relationships; for example: (1) the mechanical strengthening produced by a symmetrical bicrystal grain boundary; (2) cleavage crack formation at the intersection within a crystal of symmetrical dislocation pile-ups; (3) symmetry aspects of anisotropic crystal indentation hardness measurements; (4) X-ray diffraction topography imaging of dislocation strains and subgrain boundary misorientations; and (5) point and space group aspects of twinning. Several applications are described in relation to the strengthening of grain boundaries in nanopolycrystals and of multiply-oriented crystal grains in polysilicon photovoltaic solar cell materials. A number of crystallographic aspects of the different topics are illustrated with a stereographic method of presentation.Item An Entropy-Based Damage Characterization(MDPI, 2014-12-05) Amiri, Mehdi; Modarres, MohammadThis paper presents a scientific basis for the description of the causes of damage within an irreversible thermodynamic framework and the effects of damage as observable variables that signify degradation of structural integrity. The approach relies on the fundamentals of irreversible thermodynamics and specifically the notion of entropy generation as a measure of degradation and damage. We first review the state-of-the-art advances in entropic treatment of damage followed by a discussion on generalization of the entropic concept to damage characterization that may offers a better definition of damage metric commonly used for structural integrity assessment. In general, this approach provides the opportunity to described reliability and risk of structures in terms of fundamental science concepts. Over the years, many studies have focused on materials damage assessment by determining physics-based cause and affect relationships, the goal of this paper is to put this work in perspective and encourage future work of materials damage based on the entropy concept.Item A Thermodynamic Entropy Approach to Reliability Assessment with Applications to Corrosion Fatigue(MDPI, 2015-10-16) Imanian, Anahita; Modarres, MohammadThis paper outlines a science-based explanation of damage and reliability of critical components and structures within the second law of thermodynamics. The approach relies on the fundamentals of irreversible thermodynamics, specifically the concept of entropy generation as an index of degradation and damage in materials. All damage mechanisms share a common feature, namely energy dissipation. Dissipation, a fundamental measure for irreversibility in a thermodynamic treatment of non-equilibrium processes, is quantified by entropy generation. An entropic-based damage approach to reliability and integrity characterization is presented and supported by experimental validation. Using this theorem, which relates entropy generation to dissipative phenomena, the corrosion fatigue entropy generation function is derived, evaluated, and employed for structural integrity and reliability assessment of aluminum 7075-T651 specimens.Item Crystal Dislocations(MDPI, 2016-01-06) Armstrong, Ronald W.Crystal dislocations were invisible until the mid-20th century although their presence had been inferred; the atomic and molecular scale dimensions had prevented earlier discovery. Now they are normally known to be just about everywhere, for example, in the softest molecularly-bonded crystals as well as within the hardest covalently-bonded diamonds. The advent of advanced techniques of atomic-scale probing has facilitated modern observations of dislocations in every crystal structure-type, particularly by X-ray diffraction topography and transmission electron microscopy. The present Special Issue provides a flavor of their ubiquitous presences, their characterizations and, especially, their influence on mechanical and electrical properties.Item Evaluation of Batteries for Safe Air Transport(MDPI, 2016-05-05) Williard, Nicholas; Hendricks, Christopher; Sood, Bhanu; Chung, Jae Sik; Pecht, MichaelLithium-ion batteries are shipped worldwide with many limitations implemented to ensure safety and to prevent loss of cargo. Many of the transportation guidelines focus on new batteries; however, the shipment requirements for used or degraded batteries are less clear. Current international regulations regarding the air transport of lithium-ion batteries are critically reviewed. The pre-shipping tests are outlined and evaluated to assess their ability to fully mitigate risks during battery transport. In particular, the guidelines for shipping second-use batteries are considered. Because the electrochemical state of previously used batteries is inherently different from that of new batteries, additional considerations must be made to evaluate these types of cells. Additional tests are suggested that evaluate the risks of second-use batteries, which may or may not contain incipient faults.Item Fabrication of a Miniature Paper-Based Electroosmotic Actuator(MDPI, 2016-11-08) Sritharan, Deepa; Smela, ElisabethA voltage-controlled hydraulic actuator is presented that employs electroosmotic fluid flow (EOF) in paper microchannels within an elastomeric structure. The microfluidic device was fabricated using a new benchtop lamination process. Flexible embedded electrodes were formed from a conductive carbon-silicone composite. The pores in the layer of paper placed between the electrodes served as the microchannels for EOF, and the pumping fluid was propylene carbonate. A sealed fluid-filled chamber was formed by film-casting silicone to lay an actuating membrane over the pumping liquid. Hydraulic force generated by EOF caused the membrane to bulge by hundreds of micrometers within fractions of a second. Potential applications of these actuators include soft robots and biomedical devices.Item Crystal Indentation Hardness(MDPI, 2017-01-12) Armstrong, Ronald W.; Walley, Stephen M.; Elban, Wayne L.There is expanded interest in the long-standing subject of the hardness properties of materials. A major part of such interest is due to the advent of nanoindentation hardness testing systems which have made available orders of magnitude increases in load and displacement measuring capabilities achieved in a continuously recorded test procedure. The new results have been smoothly merged with other advances in conventional hardness testing and with parallel developments in improved model descriptions of both elastic contact mechanics and dislocation mechanisms operative in the understanding of crystal plasticity and fracturing behaviors. No crystal is either too soft or too hard to prevent the determination of its elastic, plastic and cracking properties under a suitable probing indenter. A sampling of the wealth of measurements and reported analyses associated with the topic on a wide variety of materials are presented in the current Special Issue.