Mechanical Engineering

Permanent URI for this communityhttp://hdl.handle.net/1903/2263

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Design and Validation of a Method to Characterize Human Interaction Variability
    (MDPI, 2020-09-17) Cage, Kailyn; Vaughn-Cooke, Monifa; Fuge, Mark
    Human interactions are paramount to the user experience, satisfaction, and risk of user errors. For products, anthropometry has traditionally been used in product sizing. However, structured methods that accurately map static and dynamic capabilities (e.g., functional mapping) of musculoskeletal regions for the conceptualization and redesign of product applications and use cases are limited. The present work aims to introduce and validate the effectiveness of the Interaction Variability method, which maps product components and musculoskeletal regions to determine explicit design parameters through limiting designer variation in the classification of human interaction factors. This study enrolled 16 engineering students to evaluate two series of interactions for (1) water bottle and (2) sunglasses applications enabling method validity and designer consistency assessments. For each interaction series, subjects identified and characterized product applications, components, and human interaction factors. Primary interactions, product mapping, and application identification achieved consensus between ranges of 31.25% and 100.00%, with significance (p < 0.1) observed at consensus rates of ≥75.00%. Significant levels of consistency were observed amongst designers, for at least one measure in all phases except anthropometric mapping for the sunglasses application indicating method effectiveness. Interaction variability was introduced and validated in this work as a standardized approach to identify, define, and map human and product interactions, which may reduce unintended use cases and user errors, respectively, in consumer populations.
  • Thumbnail Image
    Item
    Optimizing Mass Customization Through Interaction Variability and Manufacturing Trade-offs
    (2017) Cage, Kailyn; Vaughn-Cooke, Monifa; Fuge, Mark D; Reliability Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Design methods that consider the complete physical system (human interfaces and functional capacities of human interfaces) and incremental distinctions in humans are not widely applied. Human beings vary from a cognitive and physical standpoint. Manufacturing approaches have attempted to implement mass customization to provide end users with personalized products. However, these approaches are limited since (1) mass customization is orthogonal to human variability and (2) manufacturing costs are increased, through additional time and parts, required when mass-producing customized products. This research facilitates the integration of traditional engineering performance metrics and biomechanics creating manufacturable innovations in customized design that target population accommodation. The present method captures (1) human and product interface interactions, (2) interaction accommodation, (3) the impact of interaction accommodation on engineering performance metrics (thermal, structural, fluid, reliability, etc.), and (4) number of products required to accommodate the population. Engineering design techniques provide a structured method for reducing product and performance metrics which provide the foundational framework for the optimization model(s) integrating this method. Optimization enables optimal performance metrics constrained by population accommodation, producing the product metrics and the number of products required to accommodate the population. This work is a novel approach for addressing complex questions for interaction variability in mass production targeting population accommodation while maintaining product performance, which facilitate addressing larger problems of mass customization in mass production.