College of Behavioral & Social Sciences
Permanent URI for this communityhttp://hdl.handle.net/1903/8
The collections in this community comprise faculty research works, as well as graduate theses and dissertations..
Browse
3 results
Search Results
Item Long-Term Record of Sampled Disturbances in Northern Eurasian Boreal Forest from Pre-2000 Landsat Data(MDPI, 2014-06-27) Chen, Dong; Loboda, Tatiana; Channan, Saurabh; Hoffman-Hall, AmandaStand age distribution is an important descriptor of boreal forest structure, which is directly linked to many ecosystem processes including the carbon cycle, the land–atmosphere interaction and ecosystem services, among others. Almost half of the global boreal biome is located in Russia. The vast extent, remote location, and limited accessibility of Russian boreal forests make remote sensing the only feasible approach to characterize these forests to their full extent. A wide variety of satellite observations are currently available to monitor forest change and infer its structure; however, the period of observations is mostly limited to the 2000s era. Reconstruction of wall-to-wall maps of stand age distribution requires merging longer-term site observations of forest cover change available at the Landsat scale at a subset of locations in Russia with the wall-to-wall coverage available from coarse resolution satellites since 2000. This paper presents a dataset consisting of a suite of multi-year forest disturbance samples and samples of undisturbed forests across Russia derived from Landsat Thematic Mapper and Enhanced Thematic Mapper Plus images from 1985 to 2000. These samples provide crucial information regarding disturbance history in selected regions across the Russian boreal forest and are designed to serve as a training and/or validation dataset for coarse resolution data products. The overall accuracy and Kappa coefficient for the entire sample collection was found to be 83.98% and 0.83%, respectively. It is hoped that the presented dataset will benefit subsequent studies on a variety of aspects of the Russian boreal forest, especially in relation to the carbon budget and climate.Item Impacts of a changing fire frequency on soil carbon stocks in interior Alaskan boreal forests(2014) Hoy, Elizabeth Embury; Kasischke, Eric S; Geography; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Increasing temperatures and drier conditions, related to climate change, have resulted in changes to the fire regime in interior Alaskan boreal forests, including increases in burned area and fire frequency. These fire regime changes alter carbon storage and emissions, especially in the thick organic soils of black spruce (Picea mariana) forests. While there are ongoing studies of the size and severity of fire using ground- and remote-based studies in mature black spruce forests, a better understanding of fire regime changes to immature black spruce forests is needed. The goal of this dissertation research was to assess impacts of changing fire frequency on soil organic layer (SOL) carbon consumption during wildland fires in recovering Alaskan black spruce forests using a combination of geospatial and remote sensing analyses, field-based research, and modeling. The research objectives were to 1) quantify burning in recovering vegetated areas; 2) analyze factors associated with variations in fire frequency; 3) quantify how fire frequency affects depth of burning, residual SOL depth, and carbon loss in the SOL of black spruce forests; and 4) analyze how fire frequency impacts carbon consumption in these forests. Results showed that considerable burning in the region occurs in stands not yet fully recovered from earlier fire events (~20% of burned areas are in immature stands). Additionally, burning in recovering black spruce forests (~40 yrs old) resulted in SOL depth of burn similar to that in mature forests which have burned. Incorporating these results into a modeling framework (through adding an immature black spruce fuel type and associated ground-layer carbon consumption values) resulted in higher ground-layer carbon consumption (and thus total carbon consumed) for areas that burned in 2004 and 2005 than that of a previous version of the model. This research indicated that the dominant controls on fire behavior in this system were fuel type and amount, not fuel condition, and that changes in vegetation associated with more frequent fire (shift to deciduous and shrub vegetation which does not traditionally burn as readily) may represent a long-term negative feedback on burned area. These new results provide insight into the fire-climate-vegetation dynamics within the region and could be used to both inform and validate modeling efforts to better estimate soil carbon pools and emissions as climate continues to change.Item IMPACT OF CLIMATE CHANGE ON WILDLAND FIRE THREAT TO THE AMUR TIGER AND ITS HABITAT(2008-05-09) Loboda, Tatiana V; Justice, Christopher O; Geography; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Global biodiversity is increasingly threatened by combined pressures from human- and climate-related environmental change. Projected climate change indicates that these trends are likely to continue and may accelerate by the end of this century leading to large scale modification of species habitats. Such modification will be amplified by an increase in catastrophic natural events such as wildland fire - one of the dominant disturbance agents in boreal and temperate forests of the Russian Far East (RFE). In the RFE, large fire events lead to abrupt, extensive, and long-term conversion of forests to open landscapes, thus considerably impacting the habitat of the critically endangered Amur tiger (Panthera tigris altaica). A remotely sensed data-driven regional fire threat model (FTM) is developed to assess current and projected fire threat to the Amur tiger under scenarios of climate change. The FTM is parameterized to account for regional specifics of fire occurrence in the RFE and fire impacts on the Amur tigers, their main prey, and their habitat. Fire regimes are shown to be strongly influenced by anthropogenic use of fire and the monsoonal climate of the RFE, with large fire seasons observed during uncharacteristically dry years. Even with a large proportion of human ignition sources and periodic extreme events, fire currently poses a limited threat to the Amur tiger meta-population. The observed peaks in high fire threat conditions are localized in space and time and are likely to impact a small number of individual tigers. Under the wide range of the IPCC climate change scenarios, no considerable change in fire danger is expected by the mid-21st century. However, by the end of the 21st century under the A2 (regional self-reliance) scenario of the IPCC Special Report on Emissions, fire danger over the southern part of the RFE is predicted to increase by nearly 15%. An overlap of areas of likely increase in fire danger with areas of highest tiger habitat quality results in a 20% mean yearly increase in fire threat with a mean monthly increase of ~40% in August. The results have implications for conservation strategies aimed at securing long-term habitat availability.