Decision, Operations & Information Technologies
Permanent URI for this communityhttp://hdl.handle.net/1903/2230
Prior to January 4, 2009, this unit was named Decision & Information Technologies.
Browse
4 results
Search Results
Item USING ARTIFICIAL INTELLIGENCE TO IMPROVE HEALTHCARE QUALITY AND EFFICIENCY(2020) Wang, Weiguang; Gao, Guodong Gordon; Agarwal, Ritu; Business and Management: Decision & Information Technologies; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)In recent years, artificial intelligence (AI), especially machine learning (ML) and deep learning (DL), has represented one of the most exciting advances in science. The performance of ML-based AI in many areas, such as computer vision, voice recognition, and natural language processing has improved dramatically, offering unprecedented opportunities for application in a variety of different domains. In the critical domain of healthcare, great potential exists for a broader application of ML to improve quality and efficiency. At the same time, there are substantial challenges in the development and implementation of AI in healthcare. This dissertation aims to study the application of state-of-the-art AI technologies in healthcare, ranging from original method development to model interpretation and real-world implementation. First, a novel DL-based method is developed to efficiently analyze the rich and complex electronic health record data. This DL-based approach shows promise in facilitating the analysis of real-world data and can complement clinical knowledge by revealing deeper insights. Both knowledge discovery and performance of predictive models are demonstrably boosted by this method. Second, a recurrent neural network (named LSTM-DL) is developed and shown to outperform all existing methods in addressing an important real-world question, patient cost prediction. A series of novel analyses is used to derive a deeper understanding of deep learning’s advantages. The LSTM-DL model consistently outperforms other models with nearly the same level of advantages across different subgroups. Interestingly, the advantage of the LSTM-DL is significantly driven by the amount of fluctuation in the sequential data. By opening the “black box,” the parameters learned during the training period are examined, and is it demonstrated that LSTM-DL’s ability to react to high fluctuation is gained during the training rather than inherited from its special architecture. LSTM-DL can also learn to be less sensitive to fluctuations if the fluctuation is not playing an important role. Finally, the implementation of ML models in real practice is studied. Since at its current stage of development, ML-based AI will most likely assistant human workers rather than replace them, it is critical to understand how human workers collaborate with AI. An AI tool was developed in collaboration with a medical coding company, and successfully implemented in the real work environment. The impact of this tool on worker performance is examined. Findings show that use of AI can significantly boost the work productivity of human coders. The heterogeneity of AI’s effects is further investigated, and results show that the human circadian rhythm and coder seniority are both significant factors in conditioning productivity gains. One interesting finding regarding heterogeneity is that the AI has its best effects when a coder is at her/his peak of performance (as opposed to other times), which supports the theory of human-AI complementarity. However, this theory does not necessarily hold true across different coders. While it could be assumed that senior coders would benefit more from the AI, junior coders’ productivity is found to improve more. A further qualitative study uncovers the underlying mechanism driving this interesting effect: senior coders express strong resistance to AI, and their low trust in AI significantly hinders them from realizing the AI’s value.Item Mathematical Programming Models for Influence Maximization on Social Networks(2016) Zhang, Rui; Raghavan, Subramanian; Business and Management: Decision & Information Technologies; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)In this dissertation, we apply mathematical programming techniques (i.e., integer programming and polyhedral combinatorics) to develop exact approaches for influence maximization on social networks. We study four combinatorial optimization problems that deal with maximizing influence at minimum cost over a social network. To our knowl- edge, all previous work to date involving influence maximization problems has focused on heuristics and approximation. We start with the following viral marketing problem that has attracted a significant amount of interest from the computer science literature. Given a social network, find a target set of customers to seed with a product. Then, a cascade will be caused by these initial adopters and other people start to adopt this product due to the influence they re- ceive from earlier adopters. The idea is to find the minimum cost that results in the entire network adopting the product. We first study a problem called the Weighted Target Set Selection (WTSS) Prob- lem. In the WTSS problem, the diffusion can take place over as many time periods as needed and a free product is given out to the individuals in the target set. Restricting the number of time periods that the diffusion takes place over to be one, we obtain a problem called the Positive Influence Dominating Set (PIDS) problem. Next, incorporating partial incentives, we consider a problem called the Least Cost Influence Problem (LCIP). The fourth problem studied is the One Time Period Least Cost Influence Problem (1TPLCIP) which is identical to the LCIP except that we restrict the number of time periods that the diffusion takes place over to be one. We apply a common research paradigm to each of these four problems. First, we work on special graphs: trees and cycles. Based on the insights we obtain from special graphs, we develop efficient methods for general graphs. On trees, first, we propose a polynomial time algorithm. More importantly, we present a tight and compact extended formulation. We also project the extended formulation onto the space of the natural vari- ables that gives the polytope on trees. Next, building upon the result for trees---we derive the polytope on cycles for the WTSS problem; as well as a polynomial time algorithm on cycles. This leads to our contribution on general graphs. For the WTSS problem and the LCIP, using the observation that the influence propagation network must be a directed acyclic graph (DAG), the strong formulation for trees can be embedded into a formulation on general graphs. We use this to design and implement a branch-and-cut approach for the WTSS problem and the LCIP. In our computational study, we are able to obtain high quality solutions for random graph instances with up to 10,000 nodes and 20,000 edges (40,000 arcs) within a reasonable amount of time.Item VOX POPULI: THREE ESSAYS ON THE USE OF SOCIAL MEDIA FOR VALUE CREATION IN SERVICES(2016) Mejia, Jorge; Gopal, Anandasivam; Business and Management: Decision & Information Technologies; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Prior research shows that electronic word of mouth (eWOM) wields considerable influence over consumer behavior. However, as the volume and variety of eWOM grows, firms are faced with challenges in analyzing and responding to this information. In this dissertation, I argue that to meet the new challenges and opportunities posed by the expansion of eWOM and to more accurately measure its impacts on firms and consumers, we need to revisit our methodologies for extracting insights from eWOM. This dissertation consists of three essays that further our understanding of the value of social media analytics, especially with respect to eWOM. In the first essay, I use machine learning techniques to extract semantic structure from online reviews. These semantic dimensions describe the experiences of consumers in the service industry more accurately than traditional numerical variables. To demonstrate the value of these dimensions, I show that they can be used to substantially improve the accuracy of econometric models of firm survival. In the second essay, I explore the effects on eWOM of online deals, such as those offered by Groupon, the value of which to both consumers and merchants is controversial. Through a combination of Bayesian econometric models and controlled lab experiments, I examine the conditions under which online deals affect online reviews and provide strategies to mitigate the potential negative eWOM effects resulting from online deals. In the third essay, I focus on how eWOM can be incorporated into efforts to reduce foodborne illness, a major public health concern. I demonstrate how machine learning techniques can be used to monitor hygiene in restaurants through crowd-sourced online reviews. I am able to identify instances of moral hazard within the hygiene inspection scheme used in New York City by leveraging a dictionary specifically crafted for this purpose. To the extent that online reviews provide some visibility into the hygiene practices of restaurants, I show how losses from information asymmetry may be partially mitigated in this context. Taken together, this dissertation contributes by revisiting and refining the use of eWOM in the service sector through a combination of machine learning and econometric methodologies.Item Dual-Based Local Search for Deterministic, Stochastic and Robust Variants of the Connected Facility Location Problem(2011) Bardossy, Maria G.; Raghavan, Subramanian; Business and Management: Decision & Information Technologies; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)In this dissertation, we propose the study of a family of network design problems that arise in a wide range of practical settings ranging from telecommunications to data management. We investigate the use of heuristic search procedures coupled with lower bounding mechanisms to obtain high quality solutions for deterministic, stochastic and robust variants of these problems. We extend the use of well-known methods such as the sample average approximation for stochastic optimization and the Bertsimas and Sim approach for robust optimization with heuristics and lower bounding mechanisms. This is particular important for NP-complete problems where even deterministic and small instances are difficult to solve to optimality. Our extensions provide a novel way of applying these techniques while using heuristics; which from a practical perspective increases their usefulness.