Geology

Permanent URI for this communityhttp://hdl.handle.net/1903/2243

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Comparison of GRUAN RS92 and RS41 Radiosonde Temperature Biases
    (MDPI, 2021-06-30) Jing, Xin; Shao, Xi; Liu, Tung-Chang; Zhang, Bin
    In this study, we validated the consistency of the GRUAN RS92 and RS41 datasets, versions EDT.1 and GDP.2, in the upper troposphere and lower stratosphere (200–20 hPa), through dual launch campaigns at the GRUAN site and using the radio occultation (RO) product and the ERA5 reanalysis from ECMWF as standards for double difference comparison. Separate comparisons with the references were also performed in order to trace the origin of the bias between the two instruments. Then, the performance of the GRUAN raw temperature correction algorithm was evaluated, from the aspects of day–night, the solar zenith angle, and the pressure level, for GDP.2 version products. The results show that RS92.EDT.1 has a warm bias of 0.355 K, compared to RS41.EDT.1, at 20 hPa, during daytime. This bias was found to mainly originate from RS92.EDT.1, based on the separate comparison with RO or ECMWF ERA5 data. RS92.GDP.2 is consistent with RS41.GDP.2, but a separate comparison indicated that the two original GDP.2 products have a ~1 K warm bias at 20 hPa during daytime, compared with RO or ECMWF ERA5 data. The GRUAN correction method can reduce the warm bias up to 0.5 K at 20 hPa during daytime. As a result, this GRUAN correction method is efficient, and it is dependent on the solar zenith angle and pressure level.
  • Thumbnail Image
    Item
    Spectral Recalibration of NOAA HIRS Longwave CO2 Channels toward a 40+ Year Time Series for Climate Studies
    (MDPI, 2021-10-09) Zhang, Bin; Cao, Changyong; Liu, Tung-Chang; Shao, Xi
    The High-Resolution Infrared Radiation Sounder (HIRS) on NOAA and MetOp A/B satellites has been observing the Earth continuously for over four decades, providing essential data for operational numerical weather prediction, retrieval of atmospheric vertical profile, and total column information on atmospheric temperature, moisture, water vapor, ozone, cloud climatology, and other geophysical parameters globally. Although the HIRS data meets the needs of the short-term weather forecast, there are inconsistencies when the long-term decadal time series is used for time series analysis. The discrepancies are caused by several factors, including spectral response differences between the HIRS models on the satellites and spectral response uncertainties and other calibration issues. Previous studies have demonstrated that significant improvements can be achieved by recalibrating some of the HIRS longwave CO2 channels (Channels 4, 5, 6, and 7), which has helped make the time series more consistent. The current study aims to extend the previous study to the remaining longwave infrared sounding channels, including Channels 1, 2, 3, and 8, using a similar approach. Similar to previous findings, the spectral shift of the HIRS bands has helped improve the consistency in the time series from NOAA-06 to MetOp-A and B for these channels. We also found that HIRS channels on MetOp-B also have bias relative to Infrared Atmospheric Sounding Interferometer (IASI) on the same satellite, especially Channel 4, and a spectral shift significantly reduced the bias. To bridge the observation gap in time series in the mid-1980s between NOAA-07 and NOAA-09, the global mean method has been used since no transfer radiometers between them was available for this period, and the spectral response function corrections, therefore, can be applied to the earliest satellites (NOAA-06) for these channels. The recalibration parameters have been provided to other scientists at the University of Wisconsin for improving the time series in their long-term studies using historical HIRS data and are now made available to the science community.