Entomology

Permanent URI for this communityhttp://hdl.handle.net/1903/11813

Browse

Search Results

Now showing 1 - 5 of 5
  • Item
    Use of Molecular Gut Content Analysis to Decipher the Range of Food Plants of the Invasive Spotted Lanternfly, Lycorma delicatula
    (MDPI, 2020-04-01) Avanesyan, Alina; Lamp, William O.
    Spotted lanternfly, Lycorma delicatula (Hemiptera: Fulgoridae), is an introduced highly invasive insect pest in the US that poses a significant risk to forestry and agriculture. Assessing and predicting plant usage of the lanternfly has been challenging, and little is known regarding the lanternfly nymph association with its host plants. In this study, we focused on: (a) providing a protocol for using molecular markers for food plant identification of L. delicatula; (b) determining whether the ingested plant DNA corresponds with DNA of the plants from which the lanternfly was collected; and, (c) investigating the spectrum of ingested plants. We utilized gut contents of third and fourth instar nymphs that were collected from multiple plants; we isolated ingested plant DNA and identified consumed plants. We demonstrated that (a) up to 534 bp of the rbcL gene from ingested plants can be detected in L. delicatula guts, (b) ingested plants in ~93% of the nymphs did not correspond with the plants from which the nymphs were collected, and (c) both introduced and native plants, as well as woody and non-woody plants, were ingested. This information will aid effective the monitoring and management of the lanternfly, as well as predict the lanternfly host plants with range expansion.
  • Item
    Diverse Host Plants of the First Instars of the Invasive Lycorma delicatula: Insights from eDNA Metabarcoding
    (MDPI, 2022-06-10) McPherson, Cameron; Avanesyan, Alina; Lamp, William O.
    Identification of host plants of the invasive spotted lanternfly, Lycorma delicatula (Hemiptera: Fulgoridae), has been the focus of many studies. While the adults and late nymphs are relatively easy to observe on plants and to use for molecular gut-content analysis, studying the early instars is more challenging. This study is the continuation of our ongoing efforts to determine the host range for each developmental stage of L. delicatula. In the present study, we focused exclusively on the first nymphal instars, and we used a novel approach, utilizing “bulk” DNA extracts for DNA metabarcoding of nymphal gut contents, to identify all the detectable plants that the nymphs had ingested prior to being collected. We were able to obtain high-quality amplicons (up to 406 bp) of a portion of the rbcL gene and detect 27 unique ingested plant species belonging to 17 families. Both native and introduced plants with the prevalence of trees and grasses were present among the ingested plants. We also identified 13 novel host plants that have not been previously reported for L. delicatula on the U.S. territory. The results from our study have important applications for developing effective programs on early monitoring of invasive L. delicatula.
  • Item
    Analysis of Plant Trait Data of Host Plants of Lycorma delicatula in the US Suggests Evidence for Ecological Fitting
    (MDPI, 2022-11-29) Avanesyan, Alina; McPherson, Cameron; Lamp, William O.
    Plant traits, used by the invasive insect herbivores to find and select suitable hosts, can play an important role in insect host range expansion. With regard to invasive Lycorma delicatula, it is not well explored, however, how the plant origin affects insect host selection, and whether native and introduced host plants differ in their morphology, lifespan, as well as environmental requirements for growth. We addressed this issue in our study through the comprehensive assessment of 25 relevant plant traits (a total of 27,601 records retrieved from the TRY database), as well as the origin and phylogenetic relationships of 37 host plants of L. delicatula in the U.S. Our results showed that only leaf area, leaf chlorophyll content, and canopy size were significantly greater in the introduced hosts than that in native plants. We did not detect a significant effect of the plant origin on other characteristics. Additionally, no significant differences between native and introduced hosts of L. delicatula in genetic distances from introduced Ailanthus altissima (the most preferred host) were detected. These results, for the first time, suggest strong evidence for ecological fitting which might drive the host plant selection of L. delicatula and its rapid spread in the U.S.
  • Item
    Positive tree diversity effects on arboreal spider abundance are tied to canopy cover in a forest experiment
    (Wiley, 2023-06-01) Butz, Elizabeth M.; Schmitt, Lauren M.; Parker, John D.; Burghardt, Karin T.
    Human actions are decreasing the diversity and complexity of forests, and a mechanistic understanding of how these changes affect predators is needed to maintain ecosystem services, including pest regulation. Using a large-scale tree diversity experiment, we investigate how spiders respond to trees growing in plots of single or mixed species combinations (4 or 12) by repeatedly sampling 540 trees spanning 15 species. In 2019 (6 years post-establishment), spider responses to tree diversity varied by tree species. By 2021, diversity had a more consistently positive effect, with trees in 4- or 12-species plots supporting 23% or 50% more spiders, respectively, compared to conspecifics in monocultures. Spiders showed stronger tree species preferences in late summer, and the positive impact of plot diversity doubled. In early summer, the positive diversity effect was tied to higher canopy cover in diverse plots, leading to higher spider densities. This indirect path strengthened in late summer, with an additional direct effect of plot diversity on spiders. Prey availability was higher in diverse plots but was not tied to spider density. Overall, diverse plots supported more predators, partly by increasing available habitat. Adopting planting strategies focused on species mixtures may better maintain higher trophic levels and ecosystem functions.
  • Item
    Birds as predators in tropical agroforestry systems
    (2008-04) Van Bael, Sunshine; Philpott, Stacy; Greenberg, Russell; Bichier, Peter; Barber, Nicholas; Mooney, Kailen; Gruner, Daniel
    Insectivorous birds reduce arthropod abundances and their damage to plants in some, but not all, studies where predation by birds has been assessed. The variation in bird effects may be due to characteristics such as plant productivity or quality, habitat complexity, and/or species diversity of predator and prey assemblages. Since agroforestry systems vary in such characteristics, these systems provide a good starting point for understanding when and where we can expect predation by birds to be important. We analyze data from bird exclosure studies in forests and agroforestry systems to ask whether birds consistently reduce their arthropod prey base and whether bird predation differs between forests and agroforestry systems. Further, we focus on agroforestry systems to ask whether the magnitude of bird predation (1) differs between canopy trees and understory plants, (2) differs when migratory birds are present or absent, and (3) correlates with bird abundance and diversity. We found that, across all studies, birds reduce all arthropods, herbivores, carnivores, and plant damage. We observed no difference in the magnitude of bird effects between agroforestry systems and forests despite simplified habitat structure and plant diversity in agroforests. Within agroforestry systems, bird reduction of arthropods was greater in the canopy than the crop layer. Top-down effects of bird predation were especially strong during censuses when migratory birds were present in agroforestry systems. Importantly, the diversity of the predator assemblage correlated with the magnitude of predator effects; where the diversity of birds, especially migratory birds, was greater, birds reduced arthropod densities to a greater extent. We outline potential mechanisms for relationships between bird predator, insect prey, and habitat characteristics, and we suggest future studies using tropical agroforests as a model system to further test these areas of ecological theory.