Entomology
Permanent URI for this communityhttp://hdl.handle.net/1903/11813
Browse
3 results
Search Results
Item Quantifying the relative contribution and furthering qualitative understanding of ftz cis-regulatory elements in Drosophila melanogaster(2022) Fischer, Matthew Douglas; Pick, Leslie; Entomology; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Embryonic development is coordinated by interactions within gene regulatory networks. This process is orchestrated at the level of transcription through the regulatory properties of enhancers, which direct spatiotemporal expression patterns when bound by specific trans-acting factors. Though enhancers can act upon promoters located at great distances irrespective of orientation, the contributions from these cis-regulatory elements (CREs) are limited by insulators and/or tethering elements that organize chromatin architecture. Much research has been conducted towards understanding the coordination of the segmentation genes that pattern the basic body plan of the fruit fly, Drosophila melanogaster, during embryogenesis. The pair-rule genes (PRGs) of this pathway, such as fushi tarazu (ftz), are expressed in seven alternating stripes across the embryo. These PRGs are required for the development of body segments, and the mis-regulation of a single transcriptional domain can result in the loss of a segment. Here, I have investigated the ftz CREs to more precisely determine their sufficiency to direct expression within ftz stripe domains and their necessity for doing so in the native context of the gene. To investigate the sufficiency, I have generated 36 standardized reporter transgenes from 18 CREs, tested in both forward and reverse orientations. All CREs examined have been inserted into the same XbaI site of the reporter plasmid, and the transgenes have been inserted into the same genomic region. Through in situ hybridization experiments, I have determined that the qualitative patterns conferred by every CRE is orientation-dependent, and I have identified two putative insulators and/or tethering elements, proposed to explain this observation. To investigate their necessity, I targeted four genomic regulatory regions for precise deletion using the CRISPR/Cas9 system to generate seven deletion mutants. Though deletions were expected to cause lethality, most of the mutants are homozygous viable and fertile; only a mutant simultaneously removing two seven-stripe CREs was homozygous lethal. Quantitative gene expression analysis by fluorescent in situ hybridization chain reaction revealed that there is a critical threshold of ftz abundance required in each stripe for segmentation to proceed. In conclusion, I have determined that the ftz CREs are redundant and function together in a non-additive manner.Item Dermestes maculatus: an intermediate-germ beetle model system for evo-devo(Springer Nature, 2015-10-16) Xiang, Jie; Forrest, Iain S.; Pick, LeslieUnderstanding how genes change during evolution to direct the development of diverse body plans is a major goal of the evo-devo field. Achieving this will require the establishment of new model systems that represent key points in phylogeny. These new model systems must be amenable to laboratory culture, and molecular and functional approaches should be feasible. To date, studies of insects have been best represented by the model system Drosophila melanogaster. Given the enormous diversity represented by insect taxa, comparative studies within this clade will provide a wealth of information about the evolutionary potential and trajectories of alternative developmental strategies. Here we established the beetle Dermestes maculatus, a member of the speciose clade Coleoptera, as a new insect model system. We have maintained a continuously breeding culture in the lab and documented Dermestes maculatus embryogenesis using nuclear and phalloidin staining. Anterior segments are specified during the blastoderm stage before gastrulation, and posterior segments are added sequentially during germ band elongation. We isolated and studied the expression and function of the pair-rule segmentation gene paired in Dermestes maculatus. In this species, paired is expressed in stripes during both blastoderm and germ band stages: four primary stripes arise prior to gastrulation, confirming an intermediate-germ mode of development for this species. As in other insects, these primary stripes then split into secondary stripes. To study gene function, we established both embryonic and parental RNAi. Knockdown of Dmac-paired with either method resulted in pair-rule-like segmentation defects, including loss of Engrailed expression in alternate stripes. These studies establish basic approaches necessary to use Dermestes maculatus as a model system. Methods are now available for use of this intermediate-germ insect for future studies of the evolution of regulatory networks controlling insect segmentation, as well as of other processes in development and homeostasis. Consistent with the role of paired in long-germ Drosophila and shorter-germ Tribolium, paired functions as a pair-rule segmentation gene in Dermestes maculatus. Thus, paired retains pair-rule function in insects with different modes of segment addition.Item Oncopeltus-like gene expression patterns in Murgantia histrionica, a new hemipteran model system, suggest ancient regulatory network divergence(Springer Nature, 2020-04-22) Hernandez, Jessica; Pick, Leslie; Reding, KatieMuch has been learned about basic biology from studies of insect model systems. The pre-eminent insect model system, Drosophila melanogaster, is a holometabolous insect with a derived mode of segment formation. While additional insect models have been pioneered in recent years, most of these fall within holometabolous lineages. In contrast, hemimetabolous insects have garnered less attention, although they include agricultural pests, vectors of human disease, and present numerous evolutionary novelties in form and function. The milkweed bug, Oncopeltus fasciatus (order: Hemiptera)—close outgroup to holometabolous insects—is an emerging model system. However, comparative studies within this order are limited as many phytophagous hemipterans are difficult to stably maintain in the lab due to their reliance on fresh plants, deposition of eggs within plant material, and long development time from embryo to adult. Here we present the harlequin bug, Murgantia histrionica, as a new hemipteran model species. Murgantia—a member of the stink bug family Pentatomidae which shares a common ancestor with Oncopeltus ~ 200 mya—is easy to rear in the lab, produces a large number of eggs, and is amenable to molecular genetic techniques. We use Murgantia to ask whether Pair-Rule Genes (PRGs) are deployed in ways similar to holometabolous insects or to Oncopeltus. Specifically, PRGs even-skipped, odd-skipped, paired and sloppy-paired are initially expressed in PR-stripes in Drosophila and a number of holometabolous insects but in segmental-stripes in Oncopeltus. We found that these genes are likewise expressed in segmental-stripes in Murgantia, while runt displays partial PR-character in both species. Also like Oncopeltus, E75A is expressed in a clear PR-pattern in blastoderm- and germband-stage Murgantia embryos, although it plays no role in segmentation in Drosophila. Thus, genes diagnostic of the split between holometabolous insects and Oncopeltus are expressed in an Oncopeltus-like fashion during Murgantia development. The similarity in gene expression between Murgantia and Oncopeltus suggests that Oncopeltus is not a sole outlier species in failing to utilize orthologs of Drosophila PRGs for PR-patterning. Rather, strategies deployed for PR-patterning, including the use of E75A in the PRG-network, are likely conserved within Hemiptera, and possibly more broadly among hemimetabolous insects.