Physics

Permanent URI for this communityhttp://hdl.handle.net/1903/2269

Browse

Search Results

Now showing 1 - 10 of 34
  • Thumbnail Image
    Item
    WAVES IN PLASMAS GENERATED BY A ROTATING MAGNETIC FIELD AND IMPLICATIONS TO RADIATION BELTS
    (2010) Karavaev, Alexey V.; Papadopoulos,, Konstantinos; Physics; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    The interaction of rotating magnetic fields (RMF) with magnetized plasmas is a fundamental plasma physics problem with implications to a wide range of areas, including laboratory and space plasma physics. Despite the importance of the topic the basic physics of the phenomenon remains unexplored. An important application of a RMF is its potential use as an efficient radiation source of low frequency waves in space plasmas, including whistler and shear Alfven waves (SAW) for controlled remediation of energetic particles in the Earth's radiation belts. In this dissertation the RMF waves generated in magnetized plasma are studied using numerical simulations with a semi-analytical three-dimensional magnetohydrodynamic (MHD) model and experiments on the generation of whistler and magnetohydrodynamic waves conducted in UCLA's Large Plasma Device. Comparisons of the simulation results with the experimental measurements, namely, measured spatiotemporal wave structures, dispersion relation with finite transverse wave number, wave amplitude dependence on plasma and RMF source parameters, show good agreement in both the whistler and MHD wave regimes. In both the experiments and the 3D MHD simulations a RMF source was found to be very efficient in the generation of MHD and whistler waves with arbitrary polarizations. The RMF source drives significant field aligned plasma currents confined by the ambient magnetic field for both the whistler and MHD wave regimes, resulting in efficient transport of wave energy along the ambient magnetic field. The efficient transfer of the wave energy results in slow decay rates of the wave amplitude along the ambient magnetic field. The circular polarization of the waves generated by the RMF source, slow amplitude decay rate along the ambient magnetic field and nonzero transverse wave number determined by the RMF source size lead to nonlocal gradients of the wave magnetic field in the direction perpendicular to the ambient magnetic field. A RMF can be generated by a system of polyphase alternating currents or by a rotating permanent or superconducting magnet. For the magnetospheric plasma rotating permanent or superconducting magnets are suitable for injection of very low frequency (VLF) shear Alfven and magnetosonic waves. The generation of whistler waves in the magnetosphere plasma requires frequencies of the order of kHz, so in order to inject whistler waves generated by a RMF it is necessary to use an antenna with polyphase alternating currents. The interactions of the waves generated by a RMF source with highly energetic electron population were investigated in LAPD experiment and by test-particle simulations of non-resonant pitch angle scattering of trapped energetic electrons using the electromagnetic fields calculated using the 3D model. It was found in both the experiment and test-particle simulations that waves generated by a RMF source are, indeed, very efficient in pitch angle scattering of trapped hot electrons due to the creation of magnetic field gradients in the direction perpendicular to the ambient magnetic field. Different scenarios for the applications to the precipitation of highly energetic electrons in the magnetosphere are presented.
  • Thumbnail Image
    Item
    Experimental Characterization of Turbulent Superfluid Helium
    (2010) Paoletti, Matthew S.; Lathrop, Daniel P; Physics; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Fundamental processes in turbulent superfluid 4He are experimentally characterized by refining a visualization technique recently introduced by Bewley et al. A mixture of hydrogen and helium gas is injected into the bulk fluid, which produces a distribution of micron-sized hydrogen tracer particles that are visualized and individually tracked allowing for local velocity measurements. Tracer trajectories are complex since some become trapped on the quantized vortices while others flow with the normal fluid. This technique is first applied to study the dynamics of a thermal counterflow. The resulting observations constitute the first direct confirmation of two-fluid motions in He II and provide a quantitative test of the expression for the dependence of the normal fluid velocity, vn, on the applied heat flux, q, derived by L. D. Landau in 1941. Nearly 20,000 individual reconnection events are identified for the first time and used to characterize the dynamics by the minimum separation distance, $delta(t)$, between two reconnecting vortices. Dimensional arguments predict that this separation behaves asymptotically as $delta(t) approx A left ( kappa vert t-t_0 vert right ) ^{1/2}$, where $kappa=h/m$ is the quantum of circulation. The major finding of the experiments is strong support for this asymptotic form with $kappa$ as the dominant controlling quantity. Nevertheless there are significant event-to-event fluctuations that are equally well fit by two modified expressions: (a) an arbitrary power-law expression $delta(t)=B vert t-t_0 vert ^{alpha}$ and (b) a correction-factor expression $delta(t)=Aleft (kappa vert t-t_0 vert right ) ^{1/2}(1+c vert t-t_0 vert )$. In light of various physical interpretations we regard the correction-factor expression (b), which attributes the observed deviations from the predicted asymptotic form to fluctuations in the local environment and boundary conditions, as best describing the experimental data. The observed dynamics appear statistically time-reversible, suggesting that an effective equilibrium has been established in quantum turbulence on the time scales investigated. The hydrogen tracers allow for the first measurements of the local velocity statistics of a turbulent quantum fluid. The distributions of velocity in the decaying turbulence are strongly non-Gaussian with 1/v3 power-law tails in contrast to the near-Gaussian statistics of homogenous and isotropic turbulence of classical fluids. The dynamics of many vortex reconnection events are examined and simple scaling arguments show that they yield the observed power-law tails.
  • Thumbnail Image
    Item
    A Continuum Model for Flocking: Obstacle Avoidance, Equilibrium, and Stability
    (2010) Mecholsky, Nicholas Alexander; Ott, Edward; Antonsen, Jr., Thomas M; Physics; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    The modeling and investigation of the dynamics and configurations of animal groups is a subject of growing attention. In this dissertation, we present a partial-differential-equation based continuum model of flocking and use it to investigate several properties of group dynamics and equilibrium. We analyze the reaction of a flock to an obstacle or an attacking predator. We show that the flock response is in the form of density disturbances that resemble Mach cones whose configuration is determined by the anisotropic propagation of waves through the flock. We investigate the effect of a flock `pressure' and pairwise repulsion on an equilibrium density distribution. We investigate both linear and nonlinear pressures, look at the convergence to a ‘cold’ (T → 0) equilibrium solution, and find regions of parameter space where different models produce the same equilibrium. Finally, we analyze the stability of an equilibrium density distribution to long-wavelength perturbations. Analytic results for the stability of a constant density solution as well as stability regimes for constant density solutions to the equilibrium equations are presented.
  • Thumbnail Image
    Item
    Dispersion of ion gyrocenters in models of anisotropic plasma turbulence
    (2009) Gustafson, Kyle Bergin; Dorland, William D; Physics; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Turbulent dispersion of ion gyrocenters in a magnetized plasma is studied in the context of a stochastic Hamiltonian transport model and nonlinear, self-consistent gyrokinetic simulations. The Hamiltonian model consists of a superposition of drift waves derived from the linearized Hasegawa-Mima equation and a zonal shear flow perpendicular to the density gradient. Finite Larmor radius (FLR) effects are included. Because there is no particle transport in the direction of the density gradient, the focus is on transport parallel to the shear flow. The prescribed flow produces strongly asymmetric non-Gaussian probability distribution functions (PDFs) of particle displacements, as was previously known. For kρ=0, where k is the characteristic wavelength of the flow and ρ is the thermal Larmor radius, a transition is observed in the scaling of the second moment of particle displacements. The transition separates nearly ballistic superdiffusive dispersion from weaker superdiffusion at later times. FLR effects eliminate this transition. Important features of the PDFs of displacements are reproduced accurately with a fractional diffusion model. The gyroaveraged ExB drift dispersion of a sample of tracer ions is also examined in a two-dimensional, nonlinear, self-consistent gyrokinetic particle-in-cell (PIC) simulation. Turbulence in the simulation is driven by a density gradient and magnetic curvature, resulting in the unstable ρ scale kinetic entropy mode. The dependence of dispersion in both the axial and radial directions is characterized by displacement and velocity increment distributions. The strength of the density gradient is varied, using the local approximation, in three separate trials. A filtering procedure is used to separate trajectories according to whether they were caught in an eddy during a set observation time. Axial displacements are compared to results from the Hasegawa-Mima model. Superdiffusion and ballistic transport are found, depending on filtering and strength of the gradient. The radial dispersion of particles, as measured by the variance of tracer displacements, is diffusive. The dependence of the running diffusion coefficient on ρ for each value of the density gradient is considered.
  • Thumbnail Image
    Item
    H (sub) alpha & Neutral Density Scaling in the Maryland Centrifugal eXperiment
    (2009) Clary, Ryan; Ellis, Richard; Hassam, Adil; Physics; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    The Maryland Centrifugal eXperiment (MCX) is a hydrogen plasma confinement experiment with a rotating mirror magnetic configuration. This experiment was designed to test the concepts of centrifugal confinement and velocity shear stabilization which may allow scaleability to a fusion reactor. These two concepts, however, rely on supersonic plasma fluid velocities, which, apart from possible plasma instabilities, could be greatly reduced by fluid drag with neutral hydrogen, leading to decreased confinement. Resonant charge exchange between a hydrogen ion and a hydrogen atom is believed to be the dominant drag mechanism on the rotating plasma. Neutral hydrogen emission lines (particularly the Balmer-alpha line, H (sub) alpha) are therefore of primary interest in diagnosing how neutral hydrogen affects plasma confinement. For this purpose, a multi-chord H (sub) alpha emission detector (multi-chord HED) was designed and constructed by the author in order to measure emissivity profiles. These profiles, together with an atomic collisional-radiative model, provide estimates of neutral hydrogen density and local charge-exchange times. Varied experimental parameters were applied to MCX discharges and the resulting variations in neutral density are compared to theoretical scaling laws. The charge-exchange times are compared to the measured momentum confinement time. We find that the inner and outer-most flux surfaces are not distinctly identified by the emissivity profile and the emissivity is dominant at the vacuum chamber wall. We also find that, while the overall emissivity profile does not match theoretical prediction, neutral density scaling is approximately described by the models. In addition, charge-exchange times are found to be much smaller than the momentum confinement time as well as to scale differently than the momentum confinement time. This dissertation includes a detailed description of the multi-chord HED system and its calibration, both spectrally and absolutely. We also present models based on neutral and plasma interaction which provide the scaling laws used to compare to experimental results.
  • Thumbnail Image
    Item
    Beam halo creation and propagation in the University of Maryland Electron Ring
    (2009) Papadopoulos, Christos F.; O'Shea, Patrick G; Kishek, Rami A; Physics; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    In this thesis we discuss the phenomenon of halo creation in charged particle beams. For this, we combine analytical, numerical and experimental work, which focuses on the University of Maryland Electron Ring, but is applicable to a wide range of accelerators in the same intensity regime. We find that the details of the beam distribution do not affect the structure of the halo, but are nonetheless important as they determine the number of particles in the halo and whether the latter can be regenerated. Furthermore, we show that the halo in configuration and velocity space comprises of the same particles, a prediction that has great importance for halo removal and diagnostics. In particular, we show that even in the case of ideal halo removal in phase space, the complicated internal dynamics of the beam core lead to halo regeneration. Following on previous work, we also construct a theoretical particle-core model for a skew quadrupole focusing channel, and compare the results to PIC simulations as well as measurements on UMER. The agreement between these three approaches is satisfactory, within the constraints of each case.
  • Thumbnail Image
    Item
    Transport in Poygonal Billiard Systems
    (2009) Reames, Matthew Lee; Dorfman, J. R.; Physics; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    The aim of this work is to explore the connections between chaos and diffusion by examining the properties of particle motion in non-chaotic systems. To this end, particle transport and diffusion are studied for point particles moving in systems with fixed polygonal scatterers of four types: (i) a periodic lattice containing many-sided polygonal scatterers; (ii) a periodic lattice containing few-sided polygonal scatterers; (iii) a periodic lattice containing randomly oriented polygonal scatterers; and (iv) a periodic lattice containing polygonal scatterers with irrational angles. The motion of a point particle in each of these system is non-chaotic, with Lyapunov exponents strictly equal to zero.
  • Thumbnail Image
    Item
    Non-linear Development of Streaming Instabilities in Magnetic Reconnection with a Strong Guide Field
    (2009) Che, Haihong; Drake, James F.; Physics; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Magnetic reconnection is recognized as a dominant mechanism for converting magnetic energy into the convective and thermal energy of particles, and the driver of explosive events in nature and laboratory. Magnetic reconnection is often modeled using resistive magnetohydrodynamics, in which collisions play the key role in facilitating the release of energy in the explosive events. However, in space plasma the collisional resistivity is far below the required resistivity to explain the observed energy release rate. Turbulence is common in plasmas and the anomalous resistivity induced by the turbulence has been proposed as a mechanism for breaking the frozen-in condition in magnetic reconnection. Turbulence-driven resistivity has remained a poorly understood, but widely invoked mechanism for nearly 50 years. The goal of this project is to understand what role anomalous resistivity plays in fast magnetic reconnection. Turbulence has been observed in the intense current layers that develop during magnetic reconnection in the Earth's magnetosphere. Electron streaming is believed to be the source of this turbulence. Using kinetic theory and 3D particle-in-cell simulations, we study the nonlinear development of streaming instabilities in 3D magnetic reconnection with a strong guide field. Early in time an intense current sheet develops around the x-line and drives the Buneman instability. Electron holes, which are bipolar spatial localized electric field structures, form and then self-destruct creating a region of strong turbulence around the x-line. At late time turbulence with a characteristic frequency in the lower hybrid range also develops, leading to a very complex mix of interactions. The difficulty we face in this project is how to address a long-standing problem in nonlinear kinetic theory: how to treat large amplitude perturbations and the associated strong wave-particle interactions. In my thesis, I address this long-standing problem using particle-in-cell simulations and linear kinetic theory.Some important physics have been revealed. 1: The lower hybrid instability (LHI) dominates the dynamics in low $beta$ plasma in combination with either the electron-electron two-stream instability (ETS) or the Buneman instability (BI), depending on the parallel phase speed of the LHI. 2: An instability with a high phase speed is required to tap the energy of the high velocity electrons. The BI with its low phase speed, can not do this. The ETS and the LHI both have high phase speed. 3: The condition for the formation of stable electron holes requires $|v_p -v_g|< sqrt{2e|phi|/m_e}$, where $|phi|$ is the amplitude of the electric potential, and $v_p$ and $v_g$ are the phase and group velocity of the relevant waves. Like ETS and BI, LHI all can form electron holes. 4: The overlapping resonance in phase space is the dominant mechanism for transporting the momentum and energy from high velocity electrons to low velocity electrons, which then couple to the ions.
  • Thumbnail Image
    Item
    Trinity: A Unified Treatment of Turbulence, Transport, and Heating in Magnetized Plasmas
    (2009) Barnes, Michael; Dorland, William; Physics; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    To faithfully simulate ITER and other modern fusion devices, one must resolve electron and ion fluctuation scales in a five-dimensional phase space and time. Simultaneously, one must account for the interaction of this turbulence with the slow evolution of the large-scale plasma profiles. Because of the enormous range of scales involved and the high dimensionality of the problem, resolved first-principles global simulations are very challenging using conventional (brute force) techniques. In this thesis, the problem of resolving turbulence is addressed by developing velocity space resolution diagnostics and an adaptive collisionality that allow for the confident simulation of velocity space dynamics using the approximate minimal necessary dissipation. With regard to the wide range of scales, a new approach has been developed in which turbulence calculations from multiple gyrokinetic flux tube simulations are coupled together using transport equations to obtain self-consistent, steady-state background profiles and corresponding turbulent fluxes and heating. This approach is embodied in a new code, Trinity, which is capable of evolving equilibrium profiles for multiple species, including electromagnetic effects and realistic magnetic geometry, at a fraction of the cost of conventional global simulations. Furthermore, an advanced model physical collision operator for gyrokinetics has been derived and implemented, allowing for the study of collisional turbulent heating, which has not been extensively studied. To demonstrate the utility of the coupled flux tube approach, preliminary results from Trinity simulations of the core of an ITER plasma are presented.
  • Thumbnail Image
    Item
    Ultracold Plasma Dynamics in a Magnetic Field
    (2009) Zhang, Xianli; Rolston, Steven L.; Physics; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Plasmas, often called the fourth state of matter and the most common one in the universe, have parameters varying by many orders of magnitude, from temperature of a few hundred kelvin in the Earth's ionosphere to 1016 K in the magnetosphere of a pulsar. Ultracold plasmas, produced by photoionizing a sample of laser-cooled and trapped atoms near the ionization limit, have extended traditional neutral plasma parameters by many orders of magnitude, to electron temperatures below 1 K and ion temperatures in the tens of &mu K to a few Kelvin, and densities of 105 cm-3 to 1010 cm-3. These plasmas thus provide a testing ground to study basic plasma theory in a clean and simple system with or without a magnetic field. Previous studies of ultracold plasmas have primarily concentrated on temperature measurements, collective modes and expansion dynamics in the absence of magnetic fields. This thesis presents the first study of ultracold plasma dynamics in a magnetic field. The presence of a magnetic field during the expansion can initiate various phenomena, such as plasma confinement and plasma instabilities. While the electron temperatures are very low in ultracold plasmas, we need only tens of Gauss of magnetic field to observe significant effects on the expansion dynamics. To probe the ultraocold plasma dynamics in a magnetic field, we developed a new diagnostic - projection imaging, which images the ion distribution by extracting the ions with a high voltage pulse onto a position-sensitive detector. Early in the lifetime of the plasma (< 20 &mu s), the size of the image is dominated by the time-of-flight Coulomb explosion of the dense ion cloud. For later times, we measure the 2-D Gaussian width of the ion image, obtaining the transverse expansion velocity as a function of magnetic field (up to 70 G),and observe that the transverse expansion velocity scales as B &minus1/2, explained by a nonlinear ambipolar diffusion model that involes anisotropic diffusion in two different directions. We also present the first observation of a plasma instability in an expanding ultracold plasma. We observe periodic emission of electrons from an ultracold plasma in weak, crossed magnetic and electric fields, and a strong perturbed electron density distribution in electron time-of-flight projection images. We identify this instability as a high-frequency electron drift instability due to the coupling between the electron drift wave and electron cyclotron harmonic, which has large wavenumbers corresponding to wavelengths close to the electron gyroradius.