Physics

Permanent URI for this communityhttp://hdl.handle.net/1903/2269

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    QUASIPARTICLES IN SUPERFLUIDS AND SUPERCONDUCTORS
    (2020) Curtis, Jonathan; Galitski, Victor M; Physics; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Quasiparticle descriptions are a powerful tool in condensed matter physics as they provide an analytical treatment of interacting systems. In this thesis we will apply this tool to theoretically describe two systems: a superconductor interacting with cavity photons and a flowing Bose-Einstein condensate forming a sonic black hole. First we will consider a two-dimensional s-wave BCS superconductor coupled to microwave cavity photons. We show how a nonequilibrium occupation of the photons can induce a nonequilibrium distribution of superconductor Bogoliubov quasiparticles, yielding an enhancement of the superconducting gap. The analytic dependence of this enhancement is provided in terms of the photon spectral and occupation functions, offering a large parameter space over which enhancement exists. Next, we analyze the equilibrium properties of a similar superconductor-cavity structure which has strong sub-dominant d-wave pairing interaction. In this case there is a collective mode known as the Bardasis-Schrieffer mode, which is essentially an uncondensed d-wave Cooper pair. We show that by driving an external supercurrent through the sample the Bardasis-Schrieffer mode can be hybridized with cavity photons, forming exotic Bardasis-Schrieffer-polaritons. We then turn to consider a flowing Bose-Einstein condensate. In the presence of inhomogeneous flow, the long-wavelength motion of quasiparticles can be mapped onto the kinematics of matter fields in a curved spacetime. This mapping allows for the simulation of a black hole and its interactions with quantum fields via analogy. We show that in the case of a step-like jump in the condensate flow the emission of analogue Hawking radiation is accompanied by evanescent modes which are pinned to the event horizon. Finally, we generalize this setup to include pseudo-spin half spinor Bose condensates. In this case, we show that the analogue spacetime the quasiparticles experience can be of the exotic Newton-Cartan type. Newton-Cartan gravity -- the geometric formulation of Newtonian gravity -- is realized when the Goldstone mode disperses quadratically as opposed to linearly. The nature of the analogue spacetime is controlled by the presence or absence of an easy-axis anisotropy in the boson spin-exchange interaction. We conclude by arguing that this Newton-Cartan spacetime can be experimentally realized in current platforms.
  • Thumbnail Image
    Item
    Cryogenic test of gravitational inverse square law below 100-micrometer length scales
    (2010) Yethadka Venkateswara, Krishna Raj; Paik, Ho Jung; Physics; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    The inverse-square law is a hallmark of theories of gravity, impressively demonstrated from astronomical scales to sub-millimeter scales, yet we do not have a complete quantized theory of gravity applicable at the shortest distance scale. Problems within modern physics such as the hierarchy problem, the cosmological constant problem, and the strong CP problem in the Standard Model motivate a search for new physics. Theories such as large extra dimensions, ‘fat gravitons,’ and the axion, proposed to solve these problems, can result in a deviation from the gravitational inverse-square law below 100 μm and are thus testable in the laboratory. We have conducted a sub-millimeter test of the inverse-square law at 4.2 K. To minimize Newtonian errors, the experiment employed a near-null source, a disk of large diameter-to-thickness ratio. Two test masses, also disk-shaped, were positioned on the two sides of the source mass at a nominal distance of 280 μm. As the source was driven sinusoidally, the response of the test masses was sensed through a superconducting differential accelerometer. Any deviations from the inverse-square law would appear as a violation signal at the second harmonic of the source frequency, due to symmetry. We improved the design of the experiment significantly over an earlier version, by separating the source mass suspension from the detector housing and making the detector a true differential accelerometer. We identified the residual gas pressure as an error source, and developed ways to overcome the problem. During the experiment we further identified the two dominant sources of error - magnetic cross-talk and electrostatic coupling. Using cross-talk cancellation and residual balance, these were reduced to the level of the limiting random noise. No deviations from the inverse-square law were found within the experimental error (2σ) down to a length scale λ = 100 μm at the level of coupling constant |α|≤2. Extra dimensions were searched down to a length scale of 78 μm (|α|≤4). We have also proposed modifications to the current experimental design in the form of new tantalum source mass and installing additional accelerometers, to achieve an amplifier noise limited sensitivity.