School of Architecture, Planning & Preservation
Permanent URI for this communityhttp://hdl.handle.net/1903/1607
The collections in this community comprise faculty research works, as well as graduate theses and dissertations.
Browse
2 results
Search Results
Item Optimal Renovation Strategies for Education Buildings—A Novel BIM–BPM–BEM Framework(MDPI, 2018-09-14) Hu, MingThe aim of this paper is to propose a novel building information model (BIM)–building performance model (BPM)–building environmental model (BEM) framework to identify the most energy-efficient and cost-effective strategies for the renovation of existing education buildings to achieve the nearly zero-energy goal while minimizing the environmental impact. A case building, the University of Maryland’s Architecture Building, was used to demonstrate the validity of the framework and a set of building performance indicators—including energy performance, environmental impacts, and occupant satisfaction—were used to evaluate renovation strategies. Additionally, this novel framework further demonstrated the interoperability among different digital tools and platforms. Lastly, following a detailed analysis and measurements, the case study results highlighted a particular energy profile as well as the retrofit needs of education buildings. Eight different renovation packages were analyzed with the top-ranking package indicating an energy saving of 62%, carbon emissions reduction of 84%, and long-term cost savings of 53%, albeit with a relatively high initial cost. The most preferable package ranked second in all categories, with a moderate initial cost.Item Cost-Effective Options for the Renovation of an Existing Education Building toward the Nearly Net-Zero Energy Goal—Life-Cycle Cost Analysis(MDPI, 2019-04-25) Hu, MingA comprehensive case study on life-cycle cost analysis (LCCA) was conducted on a two- story education building with a projected 40-year lifespan in College Park, Maryland. The aim of this paper was to (1) create a life cycle assessment model, using an education building to test the model, (2) compare the life cycle cost (LCC) of different renovation scenarios, taking into account added renewable energy resources to achieve the university’s overall carbon neutrality goal, and (3) verify the robustness of the LCC model by conducting sensitivity analysis and studying the influence of different variables. Nine renovation scenarios were constructed by combining six renovation techniques and three renewable energy resources. The LCCA results were then compared to understand the cost-effective relation between implementing energy reduction techniques and renewable energy sources. The results indicated that investing in energy-efficient retrofitting techniques was more cost-effective than investments in renewable energy sources in the long term. In the optimum scenario, renovation and renewable energy, when combined, produced close to a 90% reduction in the life cycle cost compared to the baseline. The payback period for the initial investment cost, including avoided electricity costs, varies from 1.4 to 4.1 years. This suggests that the initial investment in energy-efficient renovation is the primary factor in the LCC of an existing building.