Institute for Systems Research
Permanent URI for this communityhttp://hdl.handle.net/1903/4375
Browse
Search Results
Item The Intelligent Process Planner and Scheduler(2000) Thompson, Carl P.; Herrmann, Jeffrey W.; Lin, Edward; Fleischer, Mark; Mathur, Vidit; ISRThis report is an account of an undergraduate student participating for two months in the research and development of a web-based, planning and scheduling application. The content contains details of web-application architecture, analysis of development environments, and aspects of a scheduling application's components. Also discussed is a student's perspective on the use of web-based technology in the information age.Item Accurate Segmentation and Estimation of Parametric Motion Fields for Object-based Video Coding using Mean Field Theory(1997) Haridasan, Radhakrishan; Baras, John S.; ISR; CSHCNWe formulate the problem of decomposing a scene into its constituent objects as one of partitioning the current frame into objects comprising it. The motion parameter is modeled as a nonrandom but unknown quantity and the problem is posed as one of Maximum Likelihood (ML) estimation. The MRF potentials which characterize the underlying segmentation field are defined in a way that the spatio-temporal segmentation is constrained by the static image segmentation of the current frame. To compute the motion parameter vector and the segmentation simultaneously we use the Expectation Maximization (EM) algorithm. The E-step of the EM algorithm, which computes the conditional expectation of the segmentation field, now reflects interdependencies more accurately because of neighborhood interactions. We take recourse to Mean Field theory to compute the expected value of the conditional MRF. Robust M-estimation methods are used in the M- step. To allow for motions of large magnitudes image frames are represented at various scales and the EM procedure is embedded in a hierarchical coarse-to-fine framework. Our formulation results in a highly parallel algorithm that computes robust and accurate segmentations as well as motion vectors for use in low bit rate video coding.This report has been submitted as a paper to the SPIE conference on Visual Communications and Image Processing - VCIP98 to be held in San Jose, California on Jan 24- 30, 1998. Item Commodity Trading Using Neural Networks: Models for the Gold Market(1997) Brauner, Erik; Dayhoff, Judith E.; Sun, Xiaoyun; ISREssential to building a good financial forecasting model is having a realistic trading model to evaluate forecasting performance. Using gold trading as a platform for testing we present a profit based model which we use to evaluate a number of different approaches to forecasting. Using novel training techniques we show that neural network forecasting systems are capable of generating returns for above those of classical regression models.Item I-Q TCM: Reliable Communication Over the Rayleigh Fading Channel Close to the Cutoff Rate(1996) Al-Semari, Saud A.; Fuja, Tom E.; ISRThis paper presents some trellis codes that provide high coding gain over the frequency non-selective slowly Raleigh distributed fading channel. It is shown that the use of two encoders in parallel - used to specify the in-phase and quadrature components of the transmitted signal - results in greater minimum time diversity than the conventional design in which a single encoder is used. Using this approach - which we label ﲉ-Q TCM - codes with bandwidth efficiencies of 1,2, and 3 bits/sec/Hz are described for various constraint lengths. The performance of these codes is bounded analytically and approximated via simulation; the results show a large improvement in the BER when compared with conventional TCM schemes when perfect channel state information (CSI) is available to the receiver. Indeed, when this approach is applied to channels with independent Rayleigh fading, the resulting coding gain is close to that implied by the cutoff rate limit, even for only moderately complex systems.The proposed codes are also simulated under less ideal assumptions. For instance, results for a 1 bit/sec/Hz IQ-TCM code without CSI show a significant gain over conventional coding. Finally, simulations over channels with correlated fading were undertaken; it is concluded that an interleaver span of 4v yields performance close to what is achieved with ideal interleaving.
Item Performance Analysis of Coherent TCM Systems with Diversity Reception in Slow Rayleigh Fading(1996) Al-Semari, Saud A.; Fuja, Tom E.; ISRCoherent trellis coded modulation (TCM) systems employing diversity combining are analyzed. Three different kinds of combining are considered: maximal ratio, equal gain, and selection combining. For each combining scheme, the cutoff rate parameter is derived assuming transmission over a fully- interleaved channel with flat, slow, Rayleigh fading; in addition, tight upper bounds on the pairwise error probabilities are derived. These upper bounds are expressed in product form to permit bounding of the BER via the transfer function approach. In each case it is assumed that the diversity branches are independent and that the channel state information (CSI) can be recovered perfectly.Also included is an analysis of maximal ratio combining when the diversity branches are correlated; the cutoff rate and a tight upper bound on the pairwise error probability are derived. It is shown that, with double diversity, a branch correlation coefficient as high as 0.5 results in only slight performance degradation.
Item Channel Codes That Exploit the Residual Redundancy in CELP- Encoded Speech(1996) Alajaji, Fady; Phamdo, N.; Fuja, Tom E.; ISRWe consider the problem of reliably transmitting CELP-encoded speech over noisy communication channels. Our objective is to design efficient coding/decoding schemes for the transmission of the CELP line spectral parameters (LSP's) over very noisy channels.We begin by quantifying the amount of ﲲesidual redundancy inherent in the LSP's of Federal Standard 1016 CELP. This is done by modeling the LSP's as first and second-order Markov chains. Two models for LSP generation are proposed; the first model characterizes the intra-frame correlation exhibited by the LSP's, while the second model captures both intra-frame and inter-frame correlation. By comparing the entropy rates of the models thus constructed with the CELP rates, it is shown that as many as one-third of the LSP bits in every frame of speech are redundant.
We next consider methods by which this residual redundancy can be exploited by an appropriately designed channel decoder. Before transmission, the LSP's are encoded with a forward error control (FEC) code; we consider both block (Reed- Solomon) codes and convolutional codes. Soft-decision decoders that exploit the residual redundancy in the LSP's are implemented assuming additive white Gaussian noise (AWGN) and independent Rayleigh fading environments. Simulation results employing binary phaseshift keying (BPSK) indicate coding gains of 2 to 5 dB over soft-decision decoders that do not exploit the residual redundancy.
Item On Periodic Pulse Interval Analysis with Outliers and Missing Observations(1996) Sadler, Brian M.; Casey, Stephen D.; ISRAnalysis of periodic pulse trains based on time of arrival is considered, with perhaps very many missing observations and contaminated data. A period estimator is developed based on a modified Euclidean algorithm. This algorithm is a computationally simple, robust method for estimating the greatest common divisor of a noisy contaminated data set. The resulting estimate, while not maximum likelihood, is used as initialization in a three-step algorithm that achieves the Cramer-Rao bound for moderate noise levels, as shown by comparing Monte Carlo results with the Cramer-Rao bounds. An extension using multiple independent data records is also developed that overcomes high levels of contamination.Item Design of Structured Quantizers Based on Coset Codes(1995) Lee, Cheng-Chieh; Farvardin, N.; ISRFor memoryless sources, Entropy-Constrained Scalar Quantizers (ECSQs) can perform closely to the Gish-Pierce bound at high rates. There exist two fixed-rate variations of ECSQ -- Scalar- Vector Quantizer (SVQ) and Adaptive Entropy-Coded Quantizer (AECQ) -- that also perform closely to the Gish-Pierce bound. These quantization schemes have approximately cubic quantization cells while high-rate quantization theory suggests that quantization cells of the optimal quantizers should be approximately spherical. There are some coset codes whose Voronoi regions are very spherical. In this dissertation we present structured quantization schemes that combine these coset codes with the aforementioned quantizers (SVQ, ECSQ, and AECQ) so as to improve their performance beyond the Gish-Pierce bound.By combining trellis codes (that achieve a significant granular gain) with SVQ, ECSQ, and AECQ, we obtain Trellis-Based Scalar- Vector Quantizer (TB-SVQ), Entropy-Constrained Trellis- Coded Quantizer (ECTCQ), and Pathwise-Adaptive ECTCQ (PA-ECTCQ), respectively. With an 8-state underlying trellis code, these trellis-coded quantization schemes perform about 1.0 dB better than their naive counterparts. There are two approaches that can extend the quantizers (TB-SVQ, ECTCQ, and PA-ECTCQ) for quantizing sources with memory. The first is to combine the predictive coding operation of the Differential Pulse Code Modulation scheme with various quantizers, yielding Predictive TB-SVQ, Predictive ECTCQ, and Predictive PA-ECTCQ, respectively. There is a duality between quantizing sources with memory and transmitting data over channels with memory. Laroia, Tretter, and Farvardin have recently introduced a precoding idea that helps transmitting data efficiently over channels with memory. By exploiting this duality, the second approach combines the precoder with TB-SVQ and ECTCQ to arrive at Precoded TB-SVQ and Precoded ECTCQ, respectively. Simulation results indicate that the porformance of these quantizers are also close to the rate- distortion limit.
The PA-ECTCQ performance has been shown to be robust, in the presence of source scale and, to a lesser extent, shape mismatch conditions. We also considered adjusting the underlying entropy encoder based on the quantized output (which provide some approximate information on the source statistics). The performance of the resulting Shape-Adjusting PA-ECTCQ has been shown to be robust to a rather wide range of source shape mismatch conditions. are also close to the rate-distortion limit.
Item Analysis of Dynamic Spectra in Ferret Primary Auditory Cortex: II. Prediction of, Unit Responses to Arbitrary Dynamic Spectra(1995) Kowalski, Nina; Depireux, Didier A.; Shamma, S.A.; ISRResponses of single units and unit clusters were recorded in the ferret primary auditory cortex (AI) using broadband complex dynamic spectra. Previous work (Kowalski et al 1995) demonstrated that simpler spectra consisting of single moving ripples (i.e., sinusoidally modulated spectral profiles that travel at a constant velocity along the logarithmic frequency axis) could be used effectively to characterize the response fields and transfer functions of AI cells. An arbitrary complex dynamic spectral profile can be thought of conceptually as being composed of a weighted sum of moving ripple spectra. Such a decomposition can be computed from a two-dimensional spectro- temporal Fourier transform of the dynamic spectral profile with moving ripples as the basis function. Therefore, if AI units were essentially linear satisfying the superposition principle, then their responses to arbitrary dynamic spectra could be predicted from the responses to single moving ripples, i.e., from the units response fields and transfer functions. This conjecture was tested and confirmed with data from 293 combinations of moving ripples, involving complex spectra composed of up to 15 moving ripples of different ripple frequencies and velocities. For each case, response predictions based on the unit transfer functions were compared to measured responses. The correlation between predicted and measured responses was found to be consistently high (84% with rho > 0.6). The distribution of response parameters suggest that AI cells may encode the profile of a dynamic spectrum by performing a multiscale spectro-temporal decomposition of the dynamic spectral profile in a largely linear manner.Item Analysis of Dynamic Spectra in Ferret Primary Auditory Cortex: I. Characteristics of Single Unit Responses to Moving Ripple Spectra(1995) Kowalski, Nina; Depireux, Didier A.; Shamma, S.A.; ISRAuditory stimuli referred to as moving ripples are used to characterize the responses of both single and multiple units in the ferret primary auditory cortex (AI). Moving ripples are broadband complex sounds with sinusoidal spectral profiles that drift along the tonotopic axis at a constant velocity. Neuronal responses to moving ripples are locked to the phase of the ripple, i.e., they exhibit the same periodicity as that of the moving ripple profile. Neural responses are characterized as a function of ripple velocity (temporal property) and ripple frequency (spectral property). Transfer functions describing the response to these temporal and spectral modulations are constructed. Temporal transfer functions are inverse Fourier transformed to obtain impulse response functions that reflect the cell's temporal characteristics. Ripple transfer functions are inverse Fourier transformed to obtain the response field, characterizing the cell's response area along the tonotopic axis. These operations assume linearity in the cell's response to moving ripples. Separability of the temporal and ripple transfer functions is established by comparing transfer functions across different test parameters. Response fields measured with either stationary ripples or moving ripples are shown to be similar. Separability implies that the neuron can be modeled as processing spatio-temporal information in two distinct stages. The assumption of linearity implies that each of these stages is a linear operation.The ripples parameters that characterize cortical cells are distributed somewhat evenly, with the characteristic ripple frequencies ranging from 0.2 to over 2 cycles/octave and the characteristic angular frequency typically ranging from 2 to 20 Hz. Many responses exhibit periodicities not found in the spectral envelope of the stimulus. These periodicities are of two types. Slow rebounds with a period of about 150 ms appear with various strengths in about 30 % of the cells. Fast regular firings, with interspike intervals of the order of 10 ms are much less common and may reflect the ability of certain cells to follow the fine structure of the stimulus.
- «
- 1 (current)
- 2
- 3
- »