Institute for Systems Research
Permanent URI for this communityhttp://hdl.handle.net/1903/4375
Browse
Search Results
Item Microstructural Effects on the Machining Performance of Dental Ceramics(1997) Le, Dung T.; Qi, L.; Zhang, G.; ISRConstraints of mechanical, thermal, and chemical properties are making ceramics the material choice for industrial and dental applications. The quality of a machined surface of ceramics is fundamentally dependent on the response of the material to the machining process. This paper presents a combined analytical and experimental study with focus on optimizing the machining performance of dental ceramics -- DICOR/MGC -- with three distinguished microstructures. The study starts from analyzing the microstructural characteristics to searching for the machining conditions that provide satisfactory performance in terms of acceptable flexural strength. Evidence gained from the cutting force measurements and evaluation of fracture strength degradation indicates that the control of micro-scale fracture formed on the machined surface, with microstructural characteristics being considered, is the key factor which dominates the machining performance.Item Process Sensors, Simulation, and Control to Build in Reliability(1997) Rubloff, G.W.; ISRBuilding a reliability is fundamentally difficult because detailed mechanistic origins of reliability failures are not commonly known. Controlled process experiments and sophisticated characterization methods offer hope of revealing mechanisms more broadly. Real-time and in-line sensors present perhaps even more potential in two cases, (1) when their information is correlated with reliability performance, and (2) when used to achieve process control through course correction and/or fault management; the later has special value in difficult situations where the reliability failure emerges from process integration sensitivities. Integrated modeling and simulation structures provide a vehicle for broad knowledge capture, and enabler of design optimization from reliability and other metrics, and a platform for effective process control.Item Machinability Evaluation of Dental Restorative Materials(1996) Ng, S.J.; Zhang, G.M.; ISRCeramic materials are ideal candidates for dental restorative applications for their color, texture, and mechanical properties which closely resemble those of the human enamel. However, due to the inherent brittleness of ceramic material, material processing, especially machining, poses a variety of difficulties. Research efforts of this thesis are directed to the development of a critical guideline for evaluating the machinability of ceramic materials, where human enamel is used as a reference material for comparison.Using a systems engineering approach, a computer-based surface integrity assessment methodology is formulated. It combines the most recently developed image processing technology with computer graphics while incorporating the principles of fracture mechanics. Microhardness testing is used to study material properties related to machining. Four types of material selected are human enamel, Dicor-MGC, HCC Dentine, and HCC Enamel. Three- dimensional visualization of the surface impressions is achieved using an environmental scanning electron microscope and an atomic force microscope. Machining experiments are conducted to study the surface integrity, including surface finish, micro- cracking, and edge chipping. Analytical investigation correlates these surface responses to the machining parameters, such as spindle speed, feed rate, and the depth of cut, to seek a parametric region in which quality of machined ceramic components can be ensured. Surface integrity performance indices such as surface roughness, cavity density, and chip aspect ratio are proposed to quantify such evaluations.
Major contributions of this thesis research include the development of the combined SEM- AFM stereophotography method. The high resolution achieved with this method ensures coverage of rich information on the surface texture formed during machining. Specific findings of this thesis research include the identification of micro-mechanics of fracture occurred during the material removal process, and a good understanding of possible influences of the microstructures on the machining performance.
Item Integrating Tradeoff Analysis and Plan-Based Evaluation of Designs for Microwave Modules(1996) Trichur, Vinai S.; Ball, Michael O.; Baras, John S.; Hebbar, Kiran; Minis, Ioannis; Nau, Dana S.; Smith, Stephen J.J.; ISRPreviously, we have described two systems, EDAPS and EXTRA, which support design and process planning for the manufacture of microwave modules, complex devices with both electrical and mechanical attributes. EDAPS integrates electrical design, mechanical design, and process planning for both mechanical and electrical domains. EXTRA accesses various component and process databases to help the user define design and process options. It then supports the user in choosing among these options with an optimization bases tradeoff analysis module.In this paper, we describe our current work towards the integration and enhancement of the capabilities of EDAPS and EXTRA. We integrate EXTRA's functionality with the initial design step of EDAPS. in the resultant system, the user, supported by an enhanced tradeoff analysis capability, can select and describe a promising preliminary design and process plan based on the analysis of a variety of alternatives from both an electrical and mechanical perspective. This preliminary design is then subjected top further analysis and refinement using existing EDAPS capabilities. In addition to the integration of these two systems, specific new functions have been developed, including tradeoff analysis over a much broader set of criteria, and the ability of the tradeoff module to query the process planner to determine costs of individual options.
Item Geometric Algorithms for Recognition of Features from Solid Models(1995) Regli, W.C., III; Nau, D.S.; ISRCollaborative engineering has expanded the scope of traditional engineering design to include the identification and elimination of problems in the manufacturing process. Manufacturing features and feature-based representations have become an integral part of research on manufacturing systems, due to their ability to model the correspondence between design information and manufacturing activities. One necessary component of an integrated Computer Aided Design/Computer Aided Manufacturing (CAD/CAM) environment is a tool to automatically recognize manufacturing features from a CAD or solid model. In this thesis we present a methodology for recognizing a class of machining features and for addressing the computational issues involved in building tractable and scalable solutions for automated feature recognition. This approach is described for a class of volumetric features based on material removal volumes produced by operations on 3-axis vertical machining centers. A computational framework is developed for representing different types of common machining features and specifying the recognition problem. Based on this framework, novel serial and multi-processor recognition algorithms are described and analyzed with respect to their completeness and complexity. The goal of this dissertation is to advance the understanding of the basic computational issues that arise in feature recognition from solid models of mechanical artifacts and to facilitate development of effective and efficient systems that can scale to address industrial problems.Item Automated Manufacturability Analysis of Machined Parts(1995) Gupta, Satyandra K.; Zhang, G.M.; Nau, D.S.; ISRBecause of pressing demands to reduce lead time and product cost, increasing research attention is being given to integration of engineering design and manufacturing. In this thesis, a systematic approach has been developed for computer-aided manufacturability analysis of machined parts. This approach can be used during design stages to improve the product quality from the manufacturing point of view.Evaluating the manufacturability of a proposed design involves determining whether or not it is manufacturable with a given set of manufacturing operations - and if so, then finding the associated manufacturing efficiency. In this research, the design is represented as a solid model. The tolerance and surface finish information is represented as attributes of various faces of the solid model. Machining features are used to model the available machining operations Since there can be several different ways to manufacture a proposed design, this requires considering alternative ways to manufacture it, in order to determine which one best meets the design and manufacturing objectives.
The approach developed in this thesis is based on the systematic exploration of various machining plans. The first step is to identify all machining features which can potentially be used to machine the given design. Using these features, different machining plans are generated. Each time a new plan generated, it is examined to find whether it can produce the desired design tolerances. If a plan is found to be capable of meeting the tolerance specifications, then its rating is computed. If no machining plan can be found that is capable of producing the design, then the design cannot be machined using the given set of machining operations; otherwise, the manufacturability rating of the design is computed. Since various alternative ways of machining the part are considered in this approach, the conclusions about the manufacturability are more realistic compared to the approach where just one alternative is considered.
It is anticipated that this research will help in speeding up the evaluation of new product designs in order to decide how or whether to manufacture them. Such a capability will be useful in responding quickly to changing demands and opportunities in the marketplace.
Item On the Selection of Parts and Processes during Design of Printed Circuit Board Assemblies(1995) Ball, Michael O.; Baras, John S.; Bashyam, Sridhar; Karne, Ramesh K.; Trichur, Vinai S.; ISRWe consider a multiobjective optimization model that determines components and processes for given conceptual designs of printed circuit board assemblies. Specifically, out model outputs a set of solutions that are Pareto optimal with respect to a cost and a quality metric. The discussion here broadly outlines an integer programming based solution strategy, and represents in-progress work being carried out in collaboration with a manufacturing firm.Item Characterization of the Surface Cracking Formed during the Machining of Ceramic Material(1995) Zhang, G.M.; Ng, S.; Le, Dung T.; ISRThis paper presents a method to characterize the surface cracking formed during the machining of ceramics material. Ceramic specimens are prepared under two different machining environments, dry and submersion. An environmental scanning electron microscope is used to obtain high-magnification images of machined surfaces. Reconstruction of the surface texture in a three-dimensional space is made by scanning the images and using graphics software to obtain detailed and informative spatial views of the machined surface. The visualized surface cracks provide quantitative information on their size and shape. Two performance indices are proposed to characterize the distribution of surface cracks induced by machining in terms of the density and crack depth with reference to the machined surface. As a case study, the developed nondestructive evaluation method is used to assess the effectiveness of using the submerged machining to process ceramic material. The obtained results present a clear picture illustrating the capability of controlling the crack formation during the submerged machining.Item Current Trends and Future Challenges in Automated Manufacturability Analysis(1995) Gupta, Satyandra K.; Das, Diganta; Regli, W.C.; Nau, Dana S.; ISRIn the marketplace of the 21st century, there is no place for traditional communications between design and manufacturing. In order to ``design it right the first time,'' designers must ensure that their products are both functional and easy to manufacture. Software tools have had some successes in reducing the barriers between design and manufacturing. Manufacturability analysis systems are emerging as one such tool---enabling identification of potential manufacturing problems during the design phase and providing suggestions to designers on how to eliminate them.In this paper, we survey of current state of the art in automated manufacturability analysis. We describe the two dominant approaches to automated manufacturability analysis and overview representative systems based on their application domain. Finally, we attempt to expose some of the existing research challenges and future directions.
Item Automated Manufacturability Analysis: A Survey(1995) Das, Diganta; Gupta, Satyandra K.; Regli, W.C.; Nau, Dana S.; ISRIn the marketplace of the 21st century, there is no place for traditional ``over-the-wall'' communications between design and manufacturing. In order to ``design it right the very first time,'' designers must ensure that their products are both functional and easy to manufacture. Software tools have had some successes in reducing the barriers between design and manufacturing. Manufacturability analysis systems are emerging as one such tool---enabling identification of potential manufacturing problems during the design phase and providing suggestions to designers on how to eliminate them.In this paper, we provide a survey of current state of the art in automated manufacturability analysis. We present the historical context in which this area has emerged and outline characteristics to compare and classify various systems. We describe the two dominant approaches to automated manufacturability analysis and overview representative systems based on their application domain. We describe support tools that enhance the effectiveness of manufacturability analysis systems. Finally, we attempt to expose some of the existing research challenges and future directions.