Institute for Systems Research

Permanent URI for this communityhttp://hdl.handle.net/1903/4375

Browse

Search Results

Now showing 1 - 7 of 7
  • Thumbnail Image
    Item
    Integrating DFM with CAD through Design Critiquing
    (1994) Gupta, Satyandra K.; Regli, W.C.; Nau, D.S.; ISR
    In research on concurrent engineering and engineering design, the increasing use of design for manufacturability(DFM) is expanding the scope of traditional design activities in order to identify and eliminate manufacturing problems during the design stage. However, manufacturing a product generally involves many different kinds of manufacturing activities, each having different characteristics. A design that is good for one kind of activity may not be good for another; for example, a design that is easy to assemble may not be easy to machine. One obstacle to DFM is the difficulty involved in building a single system that can handle the various manufacturing domains relevant to a design.

    In this paper, we propose an architecture for integrating CAD with DFM. This involves the use of multiple critiquing systems, each one dedicated to one type of manufacturing domain. In the proposed framework, as the designer creates a design, a number of critiquing systems analyze its manufacturability with respect to different manufacturing domains (machining, fixturing, assembly, inspection, and, so forth), and offer advice about potential ways of improving the design.

    We anticipate that this approach can be used to build an environment that will allow designers to create high-quality products that can be manufactured more economically. This will reduce the need for redesign, thus reducing product cost and lead time.

  • Thumbnail Image
    Item
    Feature Recognition for Manufacturability Analysis
    (1994) Regli, W.C.; Gupta, Satyandra K.; Nau, D.S.; ISR
    While automated recognition of features has been attempted for a wide range of applications, no single existing approach possesses the functionality required to perform manufacturability analysis. In this paper, we present a methodology for taking a CAD model and extracting a set of machinable features suitable for generating all alternative interpretations of the model as collections of MRSEVs (Material Removal Shape Element Volumes, a STEP-based library of machining, features). This set of MRSEVs is to be employed for manufacturability analysis. The algorithm handles a variety of features including those describing holes, pockets, slots, and chamfering and filleting operations. In addition, it considers elementary accessibility constraints for these features and is provably complete over a, significant class of machinable parts the features describe. Further, the approach has low-order polynomial-time worst-case complexity.
  • Thumbnail Image
    Item
    Building MRSEV Models for CAM Applications
    (1993) Gupta, Satyandra K.; Kramer, Thomas R.; Nau, D.S.; Regli, W.C.; Zhang, G.M.; ISR
    Integrating CAD and CAM applications, one major problems is how to interpret CAD information in a manner that makes sense for CAM. Our goal is to develop a general approach that can be used with a variety of CAD and CAM applications for the manufacture of machined parts.

    In particular, we present a methodology for taking a CAD model, extracting alternative interpretations of the model as collections of MRSEVs (Material Removal Shape Element Volumes, a STEP-based library of machining features), and evaluating these interpretations to determine which one is optimal. The evaluation criteria may be defined by the user, in order to select the best interpretation for the particular application at hand.

  • Thumbnail Image
    Item
    A Systematic Approach for Analyzing the Manufacturability of Machined Parts
    (1993) Gupta, Satyandra K.; Nau, D.S.; ISR
    The ability to quickly introduce new quality products is a decisive factor in capturing market share. Because of pressing demands to reduce lead time, analyzing the manufacturability of the proposed design has become an important step in the design stage. This paper presents an approach for analyzing the manufacturability of machined parts.

    Evaluating the manufacturability of a proposed design involves determining whether or not it is manufacturable with a given set of manufacturing operations - and if so, then finding the associated manufacturing efficiency. Since there can be several different ways to manufacture a proposed design, this requires us to consider different ways to manufacture it, in order to determine which one best meets the design and manufacturing objectives.

    The first step in our approach is to identify all machining operations which can potentially be used to create the given design. Using these operations, we generate different operation plans for machining the part. Each time we generate a new operation plan, we examine whether it can produce the desired shape and tolerances, and calculate its manufacturability rating. If no operation plan can be found that is capable of producing the design, then the given design is considered unmachinable; otherwise, the manufacturability rating for the design is the rating of the best operation plan.

    We anticipate that by providing feedback about possible problems with the design, this work will help in speeding up the evaluation of new product designs in order to decide how or whether to manufacture them. Such a capability will be useful in responding quickly to changing demands and opportunities in the marketplace.

  • Thumbnail Image
    Item
    Interpreting Product Designs for Manufacturability Evaluation
    (1993) Gupta, Satyandra K.; Nau, D.S.; Zhang, G.M.; ISR
    The ability to quickly introduce new quality products is a decisive factor in capturing market share. Because of pressing demands to reduce lead time, analyzing the manufacturability of the proposed design has become an important step in the design stage. In this paper we present an approach for evaluating the manufacturability of machined parts.

    Evaluating manufacturability involves finding a way to manufacture the proposed design, and estimating the associated production cost and quality. However, there often can be several different ways to manufacture a proposed design - so to evaluate the manufacturability of the proposed design, we need to consider different ways to manufacture it, and determine which one best meets the manufacturing objectives.

    In this paper we describe a methodology for systematically generating and evaluating alternative operation plans. As a first step, we identify all machining operations which can potentially be used to create the given design. Using these operations, we generate different operation plans for machining the part. Each time we generate a new operation plan, we assign it a manufacturability rating. The manufacturability rating for the design is the rating of the best operation plan.

    We anticipate that by providing feedback about possible problems with the design, this work will be useful in providing a way to speed up the evaluation of new product designs in order to decide how or whether to manufacture them.

  • Thumbnail Image
    Item
    Generation of Alternative Feature-Based Models and Precedence Orderings for Machining Applications
    (1992) Gupta, Sandeep K.; Nau, D.S.; ISR
    For machining purposes, a part is often considered to be a feature-based model (FBM), i.e., a collection of machining features. However, often there can be several different FBM's of the same part. These models correspond to different sets of machining operations, with different precedence constraints. Which of these sets of machining operations is best depends on several factors, including dimensions, tolerances, surface finishes, availability of machine tools and cutting tools, fixturability, and optimization criteria. Thus, these alternatives should be generated and evaluated.

    In this paper we present the following results: 1. We give general mathematical definitions of machining features and FBMs.

    2. We present a systematic way to generate the alternative FBMs for a part, given an initial FBM for the part.

    3. For each FBM, interactions among the features will impose precedence constraints on the possible orderings in which these features can be machined. We show how to generate these precedence constraints automatically for each interpretation.

    4. We show how to organize the above precedence constraints into a time-order graph that represents all feasible orderings in which the features can be machined, and examine the time-order graph to see if it is consistent. If it is not consistent, then there is no way to machine this particular interpretation.

    This work represents a step toward our overall approach of developing ways for automatically generating the alternative ways in which a part can be machined, and evaluating them to see how well they can do at creating the desired part. We anticipate that the information provided by this analysis will be useful both for process planning and concurrent design.

  • Thumbnail Image
    Item
    Evaluating Product Machinability for Concurrent Engineering
    (1992) Nau, D.S.; Zhang, G.M.; Gupta, Satyandra K.; Karinthi, Raghu R.; ISR
    Decisions made during the design of a machined part can significantly affect the product's cost, quality, and lead time. Thus, in order to address the goals of concurrent engineering, it is important to evaluate the machinability of the proposed design, so that the designer can change the design to improve its machinability, To determine the machinability of the part, all of the possible alternative ways to machine the part should be generated, and their machinability evaluated. This chapter describes the techniques we have developed to do this automatically.

    The information provided by these techniques will prove useful in two ways: (1) to provide information to the manufacturing engineer about alternative ways in which the part might be machined, and (2) to provide feedback to the designer identifying problems that may arise with the machining.