College of Agriculture & Natural Resources

Permanent URI for this communityhttp://hdl.handle.net/1903/1598

The collections in this community comprise faculty research works, as well as graduate theses and dissertations.

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    THE DISTRIBUTION AND FUNCTION OF DENITRIFICATION GENES: EXPLORING AGRICULTURAL MANAGEMENT AND SOIL CHEMICAL IMPLICATIONS
    (2016) Bowen, Holly; Yarwood, Stephanie A; Environmental Science and Technology; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Denitrification is a microbially-mediated process that converts nitrate (NO3-) to dinitrogen (N2) gas and has implications for soil fertility, climate change, and water quality. Using PCR, qPCR, and T-RFLP, the effects of environmental drivers and land management on the abundance and composition of functional genes were investigated. Environmental variables affecting gene abundance were soil type, soil depth, nitrogen concentrations, soil moisture, and pH, although each gene was unique in its spatial distribution and controlling factors. The inclusion of microbial variables, specifically genotype and gene abundance, improved denitrification models and highlights the benefit of including microbial data in modeling denitrification. Along with some evidence of niche selection, I show that nirS is a good predictor of denitrification enzyme activity (DEA) and N2O:N2 ratio, especially in alkaline and wetland soils. nirK was correlated to N2O production and became a stronger predictor of DEA in acidic soils, indicating that nirK and nirS are not ecologically redundant.
  • Thumbnail Image
    Item
    Modeling Approaches for Treatment Wetlands
    (2009) Carleton, James N.; Montas, Hubert J; Biological Resources Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Although treatment wetlands can reduce pollutant loads, reliably predicting their performance remains a challenge because removal processes are often complex, spatially heterogeneous, and incompletely understood. Although initially popular for characterizing wetland performance, plug flow reactor models are problematic because their parameters exhibit correlation with hydraulic loading. One-dimensional advective-dispersive-reactive (ADE) models are also inadequate because longitudinal dispersion in wetlands is often non-Fickian as a result of steep velocity gradients. Models that make use of residence time distributions have shown promise in improving performance characterization, particularly when interdependencies of stream-tube scale velocities and reaction rate coefficients are considered (the "DND" approach). However this approach is limited to steady-state conditions, and to an assumption that transverse mixing is nil. This dissertation investigates three aspects of wetland modeling and is organized in a journal paper format. The first paper describes development of a DND model which accommodates non-steady-state conditions. The model processes flow and inlet concentration time series, and calculates as output effluent concentration time series. A version of the code allows optimization of model parameters by minimization of summed squared deviations between predicted and measured effluent concentrations. In example comparisons, model results compare favorably with measured data. The second paper develops an analytical solution to a two-dimensional advective-dispersive-reactive equation, in which all flux terms are expressed as power functions of the transverse dimension. For uniform inlet concentration this idealized heterogeneity model is similar to a DND model, but with the inclusion of transverse diffusion. An example is used to illustrate the beneficial impact that transverse mixing has on reactor performance. The third paper describes development of a model based upon a stochastic interpretation of the ADE. The solution technique that is employed results in a bicontinuum model that for steady-state conditions becomes a weighted sum of two exponential decline functions. For low and intermediate degrees of mixing, model results nicely match those of the corresponding idealized heterogeneity model, and for high mixing they match results of the corresponding one-dimensional ADE. Comparisons against data suggest the bicontinuum model may represent wetland performance better than the DND model in some but not all cases.