College of Agriculture & Natural Resources

Permanent URI for this communityhttp://hdl.handle.net/1903/1598

The collections in this community comprise faculty research works, as well as graduate theses and dissertations.

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Tributyrin, a Butyrate Pro-Drug, Primes Satellite Cells for Differentiation by Altering the Epigenetic Landscape
    (MDPI, 2021-12-09) Murray, Robert L.; Zhang, Wei; Liu, Jianan; Cooper, Jason; Mitchell, Alex; Buman, Maria; Song, Jiuzhou; Stahl, Chad H.
    Satellite cells (SC) are a population of muscle resident stem cells that are responsible for postnatal muscle growth and repair. With investigation into the genomic regulation of SC fate, the role of the epigenome in governing SC myogenesis is becoming clearer. Histone deacetylase (HDAC) inhibitors have been demonstrated to be effective at enhancing the myogenic program of SC, but their role in altering the epigenetic landscape of SC remains undetermined. Our objective was to determine how an HDAC inhibitor, butyrate, promotes myogenic differentiation. SC from tributyrin treated neonatal piglets showed a decrease relative to SC from control animals in the expression of enhance of zeste homologue-2 (EZH2), a chromatin modifier, ex vivo. Chromatin Immunoprecipitation-Sequencing (ChIP-Seq) analysis of SC isolated from tributyrin treated pigs showed a global reduction of the tri-methylation of lysine 27 of histone H3 (H3K27me3) repressive chromatin mark. To determine if reductions in EZH2 was the primary mechanism through which butyrate affects SC behavior, SC were transfected with siRNA targeting EZH2, treated with 0.5 mM butyrate, or both. Treatment with butyrate reduced paired-box-7 (Pax7) and myogenic differentiation-1 (MyoD) gene expression, while siRNA caused reductions in EZH2 had no effect on their expression. EZH2 depletion did result in an increase in differentiating SC, but not in myotube hypertrophy. These results indicate that while EZH2 reduction may force myogenic differentiation, butyrate may operate through a parallel mechanism to enhance the myogenic program.
  • Thumbnail Image
    Item
    Genome-Wide Analysis on Transcriptome and Methylome in Prevention of Mammary Tumor Induced by Early Life Combined Botanicals
    (MDPI, 2022-12-21) Arora, Itika; Li, Shizhao; Crowley, Michael R.; Li, Yuanyuan; Tollefsbol, Trygve O.
    Breast cancer (BC) is the most common malignancy and the second leading cause of cancer death among women in the United States. The consumption of natural dietary components such as broccoli sprouts (BSp) and green tea polyphenols (GTPs) has demonstrated exciting potential in reducing the risk of BC through the regulation of epigenetic mechanisms. However, little is known about their impacts on reversing epigenomic aberrations that are centrally involved in the initiation and progression of BC. Previously, we have determined the efficacy of combined BSp and GTPs treatment on the inhibition of the growth of a mammary tumor in a transgenic Her2/neu mouse model. We sought to extend our previous study to identify universal biomarkers that represent common mechanistic changes among different mouse models in response to this dietary regime by including a new transgenic mouse model, C3(1)-SV40 TAg (SV40). As a result, we identified novel target genes that were differentially expressed and methylated in response to dietary botanicals when administered singly (BSp and GTPs) and in combination (BSp + GTPs) in both mouse models. We discovered more differentially expressed and methylated genes in the combination treatment group compared to the singly administered groups. Subsequently, several biological pathways related to epigenetic regulations were identified in response to the combination treatment. Furthermore, when compared to the BSp and GTPs treatment alone, the combinatorial treatment showed a more significant impact on the regulation of the epigenetic modifier activities involved in DNA methylation and histone modifications. Our study provides key insights about the impact of the combined administration of BSp and GTPs on BC using a multi-omics analysis, suggesting a combinatorial approach is more efficacious in preventing and inhibiting BC by impacting key tumor-related genes at transcriptomic and methylomic levels. Our findings could be further extrapolated as a comprehensive source for understanding the epigenetic modifications that are associated with the effects of these dietary botanicals on BC prevention.