College of Agriculture & Natural Resources
Permanent URI for this communityhttp://hdl.handle.net/1903/1598
The collections in this community comprise faculty research works, as well as graduate theses and dissertations.
Browse
Search Results
Item Acclimation and Compensating Metabolite Responses to UV-B Radiation in Natural and Transgenic Populus spp. Defective in Lignin Biosynthesis(MDPI, 2022-08-20) Wong, Tiffany M.; Sullivan, Joe H.; Eisenstein, EdwardPlants have evolved to protect leaf mesophyll tissue from damage caused by UV-B radiation by producing an array of UV-absorbing secondary metabolites. Flavonoids (phenolic glycosides) and sinapate esters (hydroxycinnamates) have been implicated as UV-B protective compounds because of the accumulation in the leaf epidermis and the strong absorption in the wavelengths corresponding to UV. Environmental adaptations by plants also generate a suite of responses for protection against damage caused by UV-B radiation, with plants from high elevations or low latitudes generally displaying greater adaptation or tolerance to UV-B radiation. In an effort to explore the relationships between plant lignin levels and composition, the origin of growth elevation, and the hierarchical synthesis of UV-screening compounds, a collection of natural variants as well as transgenic Populus spp. were examined for sensitivity or acclimation to UV-B radiation under greenhouse and laboratory conditions. Noninvasive, ecophysiological measurements using epidermal transmittance and chlorophyll fluorescence as well as metabolite measurements using UPLC-MS generally revealed that the synthesis of anthocyanins, flavonoids, and lignin precursors are increased in Populus upon moderate to high UV-B treatment. However, poplar plants with genetic modifications that affect lignin biosynthesis, or natural variants with altered lignin levels and compositions, displayed complex changes in phenylpropanoid metabolites. A balance between elevated metabolic precursors to protective phenylpropanoids and increased biosynthesis of these anthocyanins, flavonoids, and lignin is proposed to play a role in the acclimation of Populus to UV-B radiation and may provide a useful tool in engineering plants as improved bioenergy feedstocks.