College of Agriculture & Natural Resources

Permanent URI for this communityhttp://hdl.handle.net/1903/1598

The collections in this community comprise faculty research works, as well as graduate theses and dissertations.

Browse

Search Results

Now showing 1 - 4 of 4
  • Thumbnail Image
    Item
    Extending the Cover Crop Growing Season to Reduce Nitrogen Pollution
    (2021) Sedghi, Nathan; Weil, Ray R; Environmental Science and Technology; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Maryland currently has the highest rate of cover crop use in the United States. The Cover Crop Program, started as an initiative to clean nutrients from the Chesapeake Bay, has made it a common practice to plant a cereal cover crop after cash crop harvest in fall, and kill it several weeks before cash crop planting in spring. In Maryland, this practice does not allow enough growing time with warm conditions for optimal cover crop growth. Planting earlier in fall and killing a cover crop later in spring could improve soil N cycling. We hypothesized that interseeding into a cash crop in early fall, and delaying spring cover crop termination could increase cover crop biomass, carbon accumulation, and nitrogen uptake and decrease nitrate leached. We tested these hypotheses over four years with five field experiments, consistently using a brassica-legume-cereal cover crop mix. We evaluated the relationships between cover crop planting date and fall cover crop N uptake and reduction in nitrate leaching. In spring, we tested termination timing effects on cover biomass C and N, soil mineral N concentration, soil moisture, and corn yield. We tested multiple dates for broadcast interseeding cover crops into standing soybean cash crops. We partnered with farmers on Maryland’s Eastern Shore to test if our methods are feasible at a realistic scale. We measured nitrous oxide emissions to test if our recommended cover crop practice has the negative drawback of increasing emissions of nitrous oxide, a powerful greenhouse gas. The nitrate leached under late drilled and early interseeded methods were comparable under conditions which favored late drilling, but interseeding outperformed drilling when there was adequate rainfall for seed germination. The result was lower nitrate porewater concentrations under early planted cover crops. Nitrous oxide emissions increased slightly with cover crops relative to no cover crop, but the increase was negligible when compared to the nitrous oxide produced from applying N fertilizer. Our research showed that extending the cover crop growing season of a brassica-legume-cereal mix has multiple environmental benefits and few drawbacks.
  • Thumbnail Image
    Item
    Getting Legume Cover Crops to Work in Mid-Atlantic Crop Rotations
    (2020) Peterson, Cara; Tully, Katherine L; Plant Science and Landscape Architecture (PSLA); Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    In the mid-Atlantic United States, legume cover crop adoption is limited by the shortened establishment window after double-crop soybean (Glycine max (L.) Merr.) harvest. Interseeding legume cover crops into wide-row (76 cm) double-crop soybean presents an opportunity to supplement inorganic nitrogen (N) fertilizer in the subsequent corn (Zea mays L.) crop. We conducted field trials in Maryland and Delaware in which mixtures of cereal rye (Secale cereale L.) + hairy vetch (Vicia villosa Roth), crimson clover (Trifolium incarnatum L.), red clover (Trifolium pratense L.), or winter pea (Pisum sativum var. arvense (L.) Poir) were interseeded into double-crop soybean. We then examined the N contributions of the cover crop mixtures in combination with sidedress applications of inorganic N fertilizer on corn yields in Maryland in 2018 and 2019. This research demonstrated that interseeding cover crops into double-crop soybean is a potential strategy for increasing regional adoption of legume cover crops.
  • Thumbnail Image
    Item
    Spring Seedbed Characteristics after Winterkilled Cover Crops
    (2013) Lounsbury, Natalie; Weil, Raymond R; Environmental Science and Technology; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Tillage is the common practice for seedbed preparation prior to early spring vegetables. To investigate the possibility of eliminating the need for spring tillage through the use of cover crops, spring seedbed characteristics after winterkilled cover crops forage radish (Raphanus sativus L.) and oat (Avena sativa L.) were monitored prior to and during growth of no-till and rototilled plantings of spinach (Spinacia oleracea var. Tyee) over four site years in Maryland's Coastal Plain and Piedmont regions. Results indicate that forage radish can facilitate no-till planting of spring vegetables in the mid-Atlantic without herbicides or fertilizer. Forage radish increases soil nitrate and sulfate in early spring and is best suited as a cover crop before the earliest planted main crops.
  • Thumbnail Image
    Item
    Weed Suppression By Forage Radish Winter Cover Crops
    (2010) Lawley, Yvonne Elizabeth; Weil, Ray R; Plant Science and Landscape Architecture (PSLA); Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Forage radish (Raphanus sativus L. var. longipinnatus) is a new winter cover crop in the Mid-Atlantic region. This study had three objectives: 1) to characterize the repeatability, amount, and duration of weed suppression during and after a fall-planted forage radish cover crop 2) to quantify its subsequent effect on direct seeded corn, and 3) to identify the mechanisms of this weed suppression. Forage radish cover crops were grown in ten site-years and followed by a corn crop in seven site-years in the coastal plain of Maryland. Forage radish was compared to rye (Secale cereale L.), oat (Avena sativa L.), and no cover crop treatments. Early and typical corn planting dates along with contrasting herbicide management strategies were compared over four site-years. Forage radish did not reduce population or yield in subsequent corn crops. Forage radish provided complete suppression of winter annual weeds in the fall and early spring but the suppression did not persist into the following cropping season. When forage radish cover crops were used in place of pre-plant burn down herbicide treatments to control weeds in early planted corn, some weeds were present at the time of corn emergence but corn yields were not reduced if emerged weeds were controlled with a postemergence herbicide. Controlled environment bioassays involving cover crop amended soil, aqueous plant extracts, and aqueous soil extracts along with a field experiment involving planted weed seeds did not provide evidence of allelopathy. In a residue moving experiment, no difference in spring weed suppression was observed if forage radish residues were removed prior to killing frost in November or left in place to decompose in three of four site-years. These results were supported by planting date experiments where fall ground cover and spring weed suppression was greatest for earlier planting dates of forage radish cover crops. Thus, rapid and competitive fall growth, rather than allelopathy, is the most likely mechanism of weed suppression by forage radish winter cover crop. Strategies to utilize the weed suppression of forage radish cover crops should focus on fall weed suppression and the early spring pre-plant window of weed control.