College of Agriculture & Natural Resources
Permanent URI for this communityhttp://hdl.handle.net/1903/1598
The collections in this community comprise faculty research works, as well as graduate theses and dissertations.
Browse
2 results
Search Results
Item Developing a Decision Support System for Economic Analysis of Irrigation Applications in Temperate Zones(MDPI, 2021-07-27) Hanna, Kalim; Paul, Manashi; Negahban-Azar, Masoud; Shirmohammadi, AdelClimate variability and farmers’ desire to improve the crop yield have resulted in an increase in irrigated agriculture in the mid-Atlantic region. However, the huge initial capital cost associated with the installation and operation of irrigation systems is generally prohibitive, with most farmers finding difficulty in justifying the expenditure, and uncertainty of the overall return on their investment. The objective of this study was to develop a decision tool for farmers in temperate regions to evaluate the cost-benefit of irrigation installations. The developed irrigation economic model involved the development of an economic component that balances the expected economic return, based on anticipated crop yield increases due to supplemental irrigation, versus the water, maintenance, and capital costs associated with the irrigation system. Model development included the input of relevant data and required local calibration. Soil and Water Assessment Tool (SWAT) output files were used as the basis for data input into the irrigation economic model. An irrigation-scheduling component was incorporated into the model to prescribe irrigation volumes for each agricultural field defined within the area of interest. The economic component of the model identifies and prioritizes those fields in which supplemental irrigation will result in the greatest economic return in terms of increased agricultural production and revenue. The study is conducted on the Pocomoke river basin in the Coastal Plain of Maryland’s eastern shore. Results showed that irrigation system selection was mainly influenced by cost of water and irrigation installation costs, and to a lesser extent by physical characteristics of the terrain and the associated properties.Item APPLICATION OF RECLAIMED WASTEWATER FOR AGRICULTURAL IRRIGATION: DEVELOPING A DECISION SUPPORT TOOL USING SPATIAL MULTI-CRITERIA DECISION ANALYSIS(2020) Paul, Manashi; Negahban-Azar, Masoud; Environmental Science and Technology; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Intensified climate variability, depleting groundwater, and escalating water demand create severe stress on high-quality freshwater sources used for agricultural irrigation. These challenges necessitate the exploration of alternative water sources such as reclaimed water to reduce the pressure on freshwater sources. To do so, it is key to investigate the spatial pattern of areas that are more suitable for water reuse to determine the potential of reclaimed wastewater use for irrigation. This study provides a systematic decision-analysis framework for the decision-makers using an integrated process-based hydrologic model for sustainable agricultural water management. The outcomes of this study provide evidence of the feasibility of reclaimed wastewater use in the agricultural sector. The two objectives of this study were to: 1) identify the locations that are most suitable for the reclaimed wastewater use in agriculture (hotspots); and 2) develop the watershed-scale models to assess the agricultural water budget and crop production using different water conservation scenarios including reclaimed wastewater use. To achieve the first objective, a decision-making framework was developed by using the Geographic Information System and Multi-Criteria Decision Analysis (GIS-MCDA). This framework was then tested in the Southwest (California), and the Mid-Atlantic (Maryland) regions. Based on WWTPs’ proximity, sufficient water availability, and appropriate treatment process of the treated wastewater, the “Most Suitable” and “Moderately Suitable” agricultural areas were found to be approximately 145.5 km2, and 276 km2 for California and, 26.4 km2 and 798.8 km2 for Maryland, respectively. These results were then used to develop the hydrologic models to examine water conservation and water reuse scenarios under real-world conditions, using the Soil and Water Assessment Tool (SWAT). In California, the combination of auto irrigation (AI) and regulated deficit irrigation (RDI) resulted in higher WP for both almond and grape (> 0.50 kg/m3). Results also suggested that the wastewater reuse in almond and grape irrigation could reduce groundwater consumption more than 74% and 90% under RDI and AI scenarios, respectively. For Maryland, model simulations suggested that the green water productivity (only rainfall) can be improved up to 0.713 kg/m3 for corn and 0.37 kg/m3 for soybean under the reclaimed wastewater use scenario.