College of Agriculture & Natural Resources

Permanent URI for this communityhttp://hdl.handle.net/1903/1598

The collections in this community comprise faculty research works, as well as graduate theses and dissertations.

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Item
    Characterization of recombination features and the genetic basis in multiple cattle breeds
    (Springer Nature, 2018-04-27) Shen, Botong; Jiang, Jicai; Seroussi, Eyal; Liu, George E.; Ma, Li
    Crossover generated by meiotic recombination is a fundamental event that facilitates meiosis and sexual reproduction. Comparative studies have shown wide variation in recombination rate among species, but the characterization of recombination features between cattle breeds has not yet been performed. Cattle populations in North America count millions, and the dairy industry has genotyped millions of individuals with pedigree information that provide a unique opportunity to study breed-level variations in recombination. Based on large pedigrees of Jersey, Ayrshire and Brown Swiss cattle with genotype data, we identified over 3.4 million maternal and paternal crossover events from 161,309 three-generation families. We constructed six breed- and sex-specific genome-wide recombination maps using 58,982 autosomal SNPs for two sexes in the three dairy cattle breeds. A comparative analysis of the six recombination maps revealed similar global recombination patterns between cattle breeds but with significant differences between sexes. We confirmed that male recombination map is 10% longer than the female map in all three cattle breeds, consistent with previously reported results in Holstein cattle. When comparing recombination hotspot regions between cattle breeds, we found that 30% and 10% of the hotspots were shared between breeds in males and females, respectively, with each breed exhibiting some breed-specific hotspots. Finally, our multiple-breed GWAS found that SNPs in eight loci affected recombination rate and that the PRDM9 gene associated with hotspot usage in multiple cattle breeds, indicating a shared genetic basis for recombination across dairy cattle breeds. Collectively, our results generated breed- and sex-specific recombination maps for multiple cattle breeds, provided a comprehensive characterization and comparison of recombination patterns between breeds, and expanded our understanding of the breed-level variations in recombination features within an important livestock species.
  • Thumbnail Image
    Item
    GWAS and fine-mapping of livability and six disease traits in Holstein cattle
    (Springer Nature, 2020-01-13) Freebern, Ellen; Santos, Daniel J. A.; Fang, Lingzhao; Jiang, Jicai; Parker Gaddis, Kristen L.; Liu, George E.; VanRaden, Paul M.; Maltecca, Christian; Cole, John B.; Ma, Li
    Health traits are of significant economic importance to the dairy industry due to their effects on milk production and associated treatment costs. Genome-wide association studies (GWAS) provide a means to identify associated genomic variants and thus reveal insights into the genetic architecture of complex traits and diseases. The objective of this study is to investigate the genetic basis of seven health traits in dairy cattle and to identify potential candidate genes associated with cattle health using GWAS, fine mapping, and analyses of multi-tissue transcriptome data.
  • Thumbnail Image
    Item
    Genetic Architecture of Complex Traits and Accuracy of Genomic Selection in Dairy Cattle
    (2018) Jiang, Jicai; Ma, Li; Animal Sciences; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Genomic selection has emerged as an effective approach in dairy cattle breeding, in which the key is prediction of genetic merit using dense SNP genotypes, i.e., genomic prediction. To improve the accuracy of genomic prediction, we need better understanding of the genetic architecture of complex traits and more sophisticated statistical modeling. In this dissertation, I developed several computing tools and performed a series of studies to investigate the genetic architecture of complex traits in dairy cattle and to improve genomic prediction models. First, we dissected additive, dominance, and imprinting effects for production, reproduction and health traits in dairy cattle. We found that non-additive effects contributed a non-negligible amount (more for reproduction traits) to the total genetic variance of complex traits in cattle. We also identified a dominant quantitative trait locus (QTL) for milk yield, revealing that detection of QTLs with non-additive effect is possible in genome-wide association studies (GWAS) using a large dataset. Second, we developed a powerful Bayesian method and a fast software tool (BFMAP) for SNP-set association and fine-mapping. We demonstrated that BFMAP achieves a power similar to or higher than existing software tools but is at least a few times faster for association tests. We also showed that BFMAP performs well for fine-mapping and can efficiently integrate fine-mapping with functional enrichment analysis. Third, we performed large-scale GWAS and fine-mapped 35 production, reproduction, and body conformation traits to single-gene resolution. We identified many novel association signals and many promising candidate genes. We also characterized causal effect enrichment patterns for a few functional annotations in dairy cattle genome and showed that our fine-mapping result can be readily used for future functional studies. Fourth, we developed an efficient Bayesian method and a fast computing tool (SSGP) for using functional annotations in genomic prediction. We demonstrated that the method and software have great potential to increase accuracy in genomic prediction and the capability to handle very large data. Collectively, these studies advance our understanding of the genetic architecture of complex traits in dairy cattle and provide fast computing tools for analyzing complex traits and improving genomic prediction.