Nutrition & Food Science

Permanent URI for this communityhttp://hdl.handle.net/1903/2267

null

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Curcumin-Loaded Pickering Emulsion Formed by Ultrasound and Stabilized by Metal Organic Framework Optimization
    (MDPI, 2021-03-03) Ma, Peihua; Zhang, Zhi; Tsai, Shawn; Zhang, Hongchao; Li, Yuan; Yuan, Fang; Wang, Qin
    The ultrasound-assisted preparation of a curcumin-loaded metal organic framework (MOF) UiO-66-NH2 stabilized Pickering emulsion system was carried out in this study. A 3-level-4-factor Box–Behnken design (BBD) and response surface methodology (RSM) analysis were employed to systematically evaluate the effect of different experimental parameters (i.e., ultrasonic power, ultrasonic time, oil content, and MOF content) on curcumin loading capacity (LC) and encapsulation efficiency (EE). The results indicated that ultrasonic power and MOF content significantly affected LC and EE, whereas ultrasonic time and oil content had little effect. A mathematical model for optimizing the preparation of emulsion systems was established. Based on the ridge max analysis, an optimal condition for the newly developed curcumin-loaded MOF-Pickering emulsion was identified, i.e., ultrasonic power 150 W, ultrasonic time 11.17 min, oil content 20.0%, and MOF content 1.10%. At this condition, the LC and EE of curcumin obtained from the experiment reached 7.33% ± 0.54% and 56.18% ± 3.03%, respectively, which were within the prediction range of LC (7.35% ± 0.29%) and EE (54.34% ± 2.45%). The emulsion systems created in this study may find new applications for the delivery of bioactive compounds in food and pharmaceutical areas.
  • Thumbnail Image
    Item
    Development of Stable Pickering Emulsions with TEMPO-Oxidized Chitin Nanocrystals for Encapsulation of Quercetin
    (MDPI, 2023-01-12) Jia, Xiaoxue; Ma, Peihua; Taylor, Kim Shi-Yun; Tarwa, Kevin; Mao, Yimin; Wang, Qin
    Pickering emulsions stabilized by TEMPO-oxidized chitin nanocrystals (T-ChNCs) were developed for quercetin delivery. T-ChNCs were synthesized by TEMPO oxidation chitin and systematically characterized in terms of their physicochemical properties. T-ChNCs were rod-like with a length of 279.7 ± 11.5 nm and zeta potential around −56.1 ± 1.6 mV. The Pickering emulsions were analyzed through an optical microscope and CLSM. The results showed that the emulsion had a small droplet size (972.9 ± 86.0 to 1322.3 ± 447.7 nm), a high absolute zeta potential value (−48.2 ± 0.8 to −52.9 ± 1.9 mV) and a high encapsulation efficiency (quercetin: 79.6%). The emulsion stability was measured at different levels of T-ChNCs and pH values. The droplet size and zeta potential decreased with longer storage periods. The emulsions formed by T-ChNCs retarded the release of quercetin at half rate of that of the quercetin ethanol solution. These findings indicated that T-ChNCs are a promising candidate for effectively stabilizing Pickering emulsions and controlling release of quercetin.