Materials Science & Engineering
Permanent URI for this communityhttp://hdl.handle.net/1903/2260
Browse
65 results
Search Results
Item Microstructural Evolution in Friction Stir Welding of Ti-5111(2010) Wolk, Jennifer Nguyen; Salamanca-Riba, Lourdes; Material Science and Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Titanium and titanium alloys have shown excellent mechanical, physical, and corrosion properties. To address the needs of future naval combatants, this research examines an alternative joining technology, friction stir welding (FSW). Friction stir welding uses a non-consumable tool to generate frictional heat to plastically deform and mix metal to form a consolidated joint. This work focuses on FSW of Ti-5111 (Ti-5Al-1Sn-1Zr-1V-0.8Mo), a near alpha alloy. This study aims to gain a fundamental understanding of the relationship between processing parameters, microstructure, and mechanical properties of experimental 12.7mm and 6.35mm Ti-5111 friction stir welds. The resulting weld microstructure shows significant grain refinement within the weld compared to the base metal. The weld microstructures show a fully lamellar colony structure with peak welding temperatures exceeding beta transformation temperature. The friction stir weld shows material texture strengthening of the BCC F fiber component before transformation to D2 shear texture in the stir zone. Transmission electron microscopy results of the base metal and the stir zone show a lath colony-type structure with low dislocation density and no lath grain substructure. In situ TEM heating experiments of Ti-5111 friction stir welded material show transformation to the high temperature beta phase at significantly lower temperatures compared to the base metal. Thermal and deformation mechanisms within Ti-5111 were examined through the use of thermomechanical simulation. Isothermal constant strain rate tests show evidence of dynamic recrystallization and deformation above beta transus when compared with the FSW thermal profile without deformation. Subtransus deformation shows kinking and bending of the existing colony structure without recrystallization. Applying the friction stir thermal profile to constant strain rate deformation successfully reproduced the friction stir microstructure at a peak temperature of 1000ºC and a strain rate of 10/s. These results provide unique insight into the strain, strain rates, and temperatures regime within the process. Finally, the experimental thermal and deformation fields were compared using ISAIAH, a Eulerian based three-dimensional model of friction stir welding. These results are preliminary but show promise for the ability of the model to compute thermal fields for material flow, model damage prediction, and decouple texture evolution for specific thermomechanical histories in the friction stir process.Item Atomic Layer Deposition Conformality and Process Optimization: Transitioning from 2-Dimensional Planar Systems to 3-Dimensional Nanostructures(2010) Robertson Cleveland, Erin Darcy; Rubloff, Gary W; Material Science and Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Conformal coatings are becoming increasingly important as technology heads towards the nanoscale. The exceptional thickness control (atomic scale) and conformality (uniformity over nanoscale 3D features) of atomic layer deposition (ALD) has made it the process of choice for numerous applications found in microelectronics and nanotechnology with a wide variety of ALD processes and resulting materials. While its benefits derive from self-limited saturating surface reactions of alternating gas precursors, process optimization for ALD conformality is often difficult as process parameters, such as dosage, purge, temperature and pressure are often interdependent with one another, especially within the confines of an ultra-high aspect ratio nanopore. Therefore, processes must be optimized to achieve self-limiting saturated surfaces and avoid parasitic CVD-like reactions in order to maintain thickness control and achieve uniformity and conformality at the atomic level while preserving the desired materials' properties (electrical, optical, compositional, etc.). This work investigates novel approaches to optimize ALD conformality when transitioning from a 2D planar system to a 3D ultra-high aspect ratio nanopore in the context of a cross-flow wafer-scale reactor used to highlight deviations from ideal ALD behavior. Porous anodic alumina (PAA) is used as a versatile platform to analyze TiO2 ALD profiles via ex-situ SEM, EDS and TEM. Results of TiO2 ALD illustrate enhanced growth rates that can occur when the precursors titanium tetraisopropoxide and ozone were used at minimal saturation doses for ALD and for considerably higher doses. The results also demonstrate that ALD process recipes that achieve excellent across-wafer uniformity across full 100 mm wafers do not produce conformal films in ultra-high aspect ratio nanopores. The results further demonstrate that conformality is determined by precursor dose, surface residence time, and purge time, creating large depletion gradients down the length of the nanopore. Also, deposition of ALD films over sharp surface features are very uniform, and verified by profile evolution modeling. This behavior, in contrast to that in high aspect ratio structures, suggests strongly that detailed dynamics, local flow conditions (e.g. viscous vs molecular), surface residence time, and ALD surface reaction kinetics play a complex role in determining ALD profiles for high aspect ratio features.Item RATIONAL DESIGN OF NON-DAMAGING CAPACITIVELY COUPLED PLASMA ETCHING AND PHOTORESIST STRIPPING PROCESSES FOR ULTRALOW K DIELECTRIC MATERIALS(2010) Kuo, Ming-Shu; Oehrlein, Gottlieb S.; Material Science and Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Resistance-capacitance delay, crosstalk, and power dissipation associated with the increasing capacitance of interconnect structures limits the performance of high-speed microelectronics and leads to the demand for porous ultralow dielectric constant (ULK) material introduction. Process integration of ULK dielectrics requires plasma etching of dielectric material, stripping of the post-etching photoresist (PR) mask, and surface cleaning of plasma-etching-related residues, without damaging the dielectric. Dual frequency capacitively coupled plasma (CCP) reactor are becoming the standard for etching of ULK materials. In this work, we evaluated ULK-compatible PR stripping using both remote plasma and in situ ashing processes coordinated with CCP fluorocarbon (FC)-based ULK etching. Remote H2 plasma enabled a high PR ashing rate while introducing little ULK damage at an elevated substrate temperature (275 °C), and was the best for our remote plasma ashing processes. In situ ashing, with the advantage of no need for an additional dedicated reactor, is preferable to the remote plasma ashing for industry, and we studied in detail CO2 in situ ashing process. The ULK damage introduced during CO2 in situ ashing increased with atomic oxygen density as a function of chamber pressure. To compare the performance of different ashing processes for PR stripping from ULK material, we introduced an ashing efficiency (AE) parameter which is defined as the thickness of PR removed over the thickness of ULK simultaneously damaged, and can be considered a process figure of merit. A high AE can be obtained under low pressure operation, which suppresses ULK damage with minimal atomic oxygen while combining with a RF bias to enhance the PR ashing rate. The preceding ULK etching process using 10% C4F8/Ar plasma deposits FC coating on ULK feature sidewalls. For H2-based remote plasma at high temperature, most of FC coating was removed rapidly and its impact on ULK ashing damage was minor. For CO2 in situ ashing, FC coating remained on ULK sidewalls and provided effective protection of ULK. FC protection was essential for the success of the CO2 in situ ashing process. A strong decrease of ULK post-ashing damage with increasing FC coverage was found, which may be due to surface protection by FC surface coverage along with pore-sealing by the FC material.Item INFLUENCE OF POLYMER STRUCTURE ON PLASMA-POLYMER INTERACTIONS IN RESIST MATERIALS(2010) Bruce, Robert Lawson; Oehrlein, Gottlieb S; Material Science and Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)The controlled patterning of polymer resists by plasma plays an essential role in the fabrication of integrated circuits and nanostructures. As the dimensions of patterned structures continue to decrease, we require an atomistic understanding underlying the morphological changes that occur during plasma-polymer interactions. In this work, we investigated how plasma surface modifications and the initial polymer structure influenced plasma etch behavior and morphological changes in polymer resists. Using a prototypical argon discharge, we observed polymer modification by ions and vacuum ultraviolet (VUV) radiation from the plasma. A thin, highly dense modified layer was formed at the polymer surface due to ion bombardment. The thickness and physical properties of this ion-damaged layer was independent of polymer structure for the systems examined here. A relationship was observed that strongly suggests that buckling caused by ion-damaged layer formation on a polymer is the origin of roughness that develops during plasma etching. Our results indicate that with knowledge of the mechanical properties of the ion-damaged layer and the polymer being processed, plasma-induced surface roughness can be predicted and the surface morphology calculated. Examining a wide variety of polymer structures, the polymer poly(4-vinylpyridine) (P4VP) was observed to produce extremely smooth surfaces during high-ion energy plasma etching. Our data suggest that VUV crosslinking of P4VP below the ion-damaged layer may prevent wrinkling. We also studied another form of resists, silicon-containing polymers that form a SiO2 etch barrier layer during O2 plasma processing. In this study, we examined whether assisting SiO2 layer formation by adding Si-O bonds to the polymer structure would improve O2 etch behavior and reduce polymer surface roughness. Our results showed that while adding Si-O bonds decreased etch rates and silicon volatilization during O2 plasma exposure, the surface roughness became worse. Enhanced roughening was linked to the decrease in glass transition temperature and elastic modulus as Si-O bonds were added to the polymer structure. For polymers used as resists it is required that the mechanical properties of the ion-damaged layer and the polymer be taken into account to understand their roughening behavior.Item NANOSTRUCTURE INVESTIGATION OF POLYMER SOLUTIONS, POLYMER GELS, AND POLYMER THIN FILMS(2009) Lee, Wonjoo; Bribeer, Robert M; Material Science and Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)This thesis discusses two systems. One is structured hydrogels which are hydrogel systems based on crosslinked poly((2-dimethylamino)ethyl methacrylate) (PDMAEMA) containing micelles which form nanoscale pores within the PDMAEMA hydrogel. The other is nanoporous block copolymer thin films where solvent selectivity is exploited to create nanopores in PS-b-P4VP thin films. Both of these are multicomponent polymer systems which have nanoscale porous structures. 1. Small angle neutron scattering of micellization of anionic surfactants in water, polymer solutions and hydrogels Nanoporous materials have been broadly investigated due to the potential for a wide range of applications, including nano-reactors, low-K materials, and membranes. Among those, molecularly imprinted polymers (MIP) have attracted a large amount of interest because these materials resemble the "lock and key" paradigm of enzymes. MIPs are created by crosslinking either polymers or monomers in the presence of template molecules, usually in water. Initially, functional groups on the polymer or the monomer are bound either covalently or noncovalently to the template, and crosslinking results in a highly crosslinked hydrogel. The MIPs containing templates are immersed in a solvent (usually water), and the large difference in the osmotic pressure between the hydrogel and solvent removes the template molecules from the MIP, leaving pores in the polymer network containing functionalized groups. A broad range of different templates have been used ranging from molecules to nanoscale structures inclucing stereoisomers, virus, and micelles. When micelles are used as templates, the size and shape before and after crosslinking is an important variable as micelles are thermodynamic objects whose structure depends on the surfactant concentration of the solution, temperature, electrolyte concentration and polymer concentration. In our research, the first goal is to understand the micellization of anionic surfactants in polymer solutions and the corresponding hydrogels using small angle neutron scattering (SANS). SANS has been widely used to investigate structures ranging from sub-nanometer to sub-micrometer. Since the scattering lengths of H and D atoms are quite different, the scattering contrast can be enhanced (and varied) through isotopic labeling. It is possible to investigate the structure of micelles in polymer solutions and hydrogels using H/D contrast matching methods with SANS. For this aim, water-soluble and chemically crosslinkgable poly((2-dimethylamino)ethyl methacrylate) (PDMAEMA) was synthesized using group transfer polymerization. In order to control the size and shape of micelles, the degree of quaternization of the polymer was also controlled through the reaction of PDMAEMA with methyl iodide. The micellization of deuterated sodium dodecylsulfate (d-SDS) in (quaternized) PDMAEMA solutions and the corresponding hydrogels was then observed using SANS and the size and shape of d-SDS micelles was obtained by modeling. 2. Nanopatterning using block copolymer/homopolymer blends Block copolymers are well-known to self-assemble into meso- and nano-scale structures. The use of block copolymers for nanostructured patterns has attracted increasing attention due to their potential use as templates and scaffolds for the fabrication of functional nanostructures. In order to realize the potential of these materials, it is necessary to be able to control the orientation of the nanoscale pattern in a precise manner. Numerous methods such as manipulation of the interfacial surface energies, use of electric fields, and controlling the rate of solvent evaporation have developed to control orientation. In addition, it has been shown that nanopores within cylindrical domains oriented normal to the substrate can be generated by several methods. For example, one component can be degraded by UV exposure, or the homopolymer in a block copolymer/homopolymer blend can be extracted in a selective solvent. In our work, polystyrene-b-poly(4-vinylpyridine) (PS-b-P4VP)/poly(4-vinylpyridine) (P4VP) films on silicon substrates were prepared using spincoating. The homopolymer was then extracted in ethanol generating pores perpendicular to the substrate. It is noted that the pore size and density were readily controlled by the amount of P4VP homopolymer in the PS-b-P4VP/P4VP solutions, giving simple control of the film structure. It was also possible to make pores more uniform and ordered by annealing in solvent vapor before extracting the homopolymer.Item Wafer-scale process and materials optimization in cross-flow atomic layer deposition(2009) Lecordier, Laurent Christophe; Rubloff, Gary W; Material Science and Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)The exceptional thickness control (atomic scale) and conformality (uniformity over nanoscale 3D features) of atomic layer deposition (ALD) has made it the process of choice for numerous applications from microelectronics to nanotechnology, and for a wide variety of ALD processes and resulting materials. While its benefits derive from self-terminated chemisorbed reactions of alternatively supplied gas precursors, identifying a suitable process window in which ALD's benefits are realized can be a challenge, even in favorable cases. In this work, a strategy exploiting in-situ gas phase sensing in conjunction with ex-situ measurements of the film properties at the wafer scale is employed to explore and optimize the prototypical Al2O3 ALD process. Downstream mass-spectrometry is first used to rapidly identify across the [H2O x Al(CH3)3] process space the exposure conditions leading to surface saturation. The impact of precursor doses outside as well as inside the parameter space outlined by mass-spectrometry is then investigated by characterizing film properties across 100 mm wafer using spectroscopic ellipsometry, CV and IV electrical characterization, XPS and SIMS. Under ideal dose conditions, excellent thickness uniformity was achieved (1sigma/mean<1%) in conjunction with a deposition rate and electrical properties in good agreement with best literature data. As expected, under-dosing of precursor results in depletion of film growth in the flow direction across the wafer surface. Since adsorbed species are reactive with respect to subsequent dose of the complementary precursor, such depletion magnifies non-uniformities as seen in the cross-flow reactor, thereby decorating deviations from a suitable ALD process recipe. Degradation of the permittivity and leakage current density across the wafer was observed though the film composition remained unchanged. Upon higher water dose in the over-exposure regime, deposition rates increased by up to 40% while the uniformity degraded. In contrast, overdosing of TMA and ozone (used for comparison to water) did not affect the process performances. These results point to complex saturation dynamics of water dependent on partial pressure and potential multilayer adsorption caused by hydrogen-bonding.Item Characterization of Electrodeposited Chitosan: an Interfacial Layer for Bio-assembly and Sensing(2009) Buckhout-White, Susan Lynn; Rubloff, Gary W; Material Science and Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Microfluidics and Lab-on-a-Chip devices have revolutionized the field of analytical biology. To fully optimize the potential of the microfluidic environment it is critical to be able to isolate reactions in specific locations within a channel. One solution is found using chitosan, an amine-rich biopolymer with pH responsive solubility. Induction of hydrolysis at patterned electrodes within the fluidic channel provides a means to spatially control the pH, thus enabling biochemical functionalization that is both spatially and temporally programmable. While chitosan electrodeposition has proven to be reliable at producing films, its growth characteristics are not well understood. In situ optical characterization methods of laser reflectivity, fluorescence microscopy and Raman spectroscopy have been employed to understand the growth rate inter diffusion and lateral resolution of the deposition process. These techniques have also been implemented in determining where a molecule bound to an amine site of the polymer is located within the film. Currently, electrodeposited chitosan films are primarily used for tethering of biomolecules in the recreation of metabolic pathways. Beyond just a biomolecular anchor, chitosan provides a way to incorporate inorganic nanoparticles. These composite structures enable site-specific sensors for the identification of small molecules, an important aspect to many Lab-on-a-Chip applications. New methods for creating spatially localized sites for surface enhanced Raman spectroscopy (SERS) has been developed. These methods have been optimized for particle density and SERS enhancement using TEM and Raman spectroscopy. Through optimization, a viable substrate with retained chitosan amine activity capable of integration into microfluidics has been developed.Item Bottom-Up Multiferroic Nanostructures(2009) Ren, Shenqiang; Wuttig, Manfred; Material Science and Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Multiferroic and especially magnetoelectric (ME) nanocomposites have received extensive attention due to their potential applications in spintronics, information storage and logic devices. The extrinsic ME coupling in composites is strain mediated via the interface between the piezoelectric and magnetostrictive components. However, the design and synthesis of controlled nanostructures with engineering enhanced coupling remain a significant challenge. The purpose of this thesis is to create nanostructures with very large interface densities and unique connectivities of the two phases in a controlled manner. Using inorganic solid state phase transformations and organic block copolymer self assembly methodologies, we present novel self assembly "bottom-up" techniques as a general protocol for the nanofabrication of multifunctional devices. First, Lead-Zirconium-Titanate/Nickel-Ferrite (PZT/NFO) vertical multilamellar nanostructures have been produced by crystallizing and decomposing a gel in a magnetic field below the Curie temperature of NFO. The ensuing microstructure is nanoscopically periodic and anisotropic. The wavelength of the PZT/NFO alternation, 25 nm, agrees within a factor of two with the theoretically estimated value. The macroscopic ferromagnetic and magnetoelectric responses correspond qualitatively and semi-quantitatively to the features of the nanostructure. The maximum of the field dependent magnetoelectric susceptibility equals 1.8 V/cm Oe. Second, a magnetoelectric composite with controlled nanostructures is synthesized using co-assembly of two inorganic precursors with a block copolymer. This solution processed material consists of hexagonally arranged ferromagnetic cobalt ferrite (CFO) nano-cylinders within a matrix of ferroelectric Lead-Zirconium-Titanate (PZT). The initial magnetic permeability of the self-assembled CFO/PZT nanocomposite changes by a factor of 5 through the application of 2.5 V. This work may have significant impact on the development of novel memory or logic devices through self assembly techniques. It also demonstrates a universal two-phase hard template application. Last, solid-state self assembly had been used recently to form pseudoperiodic chessboard-like nanoscale morphologies in a series of chemically homogeneous complex oxide systems. We improved on this approach by synthesizing a spontaneously phase separated nanolamellar BaTiO3-CoFe2O4 bi-crystal. The superlattice is magnetoelectric with a frequency dependent coupling. The BaTiO3 component is a ferroelectric relaxor with a Vogel-Fulcher temperature of 311 K. Since the material can be produced by standard ceramic processing methods, the discovery represents great potential for magnetoelectric devices.Item NANOPOROUS AAO: A PLATFORM FOR REGULAR HETEROGENEOUS NANOSTRUCTURES AND ENERGY STORAGE DEVICES(2009) Perez, Israel; Rubloff, Gary W; Material Science and Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Nanoporous anodic aluminum oxide (AAO) has vast implications as a tool for nanoscience research and as a nanostructure in which nanoscale devices can be fabricated because of its regular and ordered nanopores. Self-assembly plays a critical role in pore ordering, causing nanopores to grow parallel with one another in high density. The mild electrochemical conditions in which porous AAO grows along with its relatively cheap starting materials makes this nanomaterial a cost effective alternative to advanced photolithography techniques for forming high surface area nanostructures over large areas. In this research, atomic layer deposition (ALD) was used to deposit conformal films within in nanoporous AAO with hopes to 1) develop methodologies to characterize ALD depositions within its high aspect ratio nanopores and 2) to better understand how to use nanoporous AAO templates as a scaffold for energy devices, specifically Metal-Insulator-Metal (MIM) capacitors. Using the nanotube template synthesis method, ALD films were deposited onto nanoporous AAO, later removing the films deposited within the templates nanopores for characterization in TEM. This nanotube metrology characterization involves first obtaining images of full length ALD-AAO nanotubes, and then measuring wall thickness as a function of depth within the nanopore. MIM nanocapacitors were also constructed in vertical AAO nanopores by deposition of multilayer ALD films. MIM stacks were patterned into micro-scale capacitors for electrical characterization.Item THE PHOTOCHEMISTRY OF POLYENYL RADICALS AND ITS APPLICATION TO UHMWPE FOR USE IN ARTIFICIAL CARTILAGE(2009) Kasser, Michael Jacob; Al-Sheikhly, Mohamad; Material Science and Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)The use of UV light as an alternative to thermal treatments above the melting point (150 °C) to remove free radicals in irradiated UHMWPE was explored. It was found that, in contrast to the allyl free radical which is converted by 258 nm light to alkyl free radicals, polyenyl radicals are not converted to alkyl radicals by UV light. None-the-less, by sandwiching UV light treatments between low temperature thermal anneals (100 °C), it was possible to reduce free radical concentrations by 30%. This reduction was achievable for depths up to one millimeter. However, this reduction did not have a significant effect on oxidation due to an increase in oxidation susceptibility because of the concurrent increase in concentration of easily abstracted allylic hydrogens. By photoirradiating for the optimal amount of time, it was possible, for the first time, to synthesize a polyethylene sample whose residual free radicals consisted of almost entirely dienyl free radicals. This allowed unambiguous identification and simulation of dienyl free radical's EPR spectra to be a singlet containing nine peaks separated by 9 G hyperfine separation. Detailed studies of photoirradiation of UHMWPE containing free radicals revealed that photoirradiation with a continuous spectrum above 200 nm causes the decay of diene unsaturations and allyl free radicals, a reduction in the overall amount of free radicals, and an increase in the degree of unsaturation of polyenyl free radicals. Upon longer photoirradiation times, polyenyl radicals were converted from lower to higher degrees of unsaturation. This effect was identical in the presence and absence of oxygen, but was suppressed by hydrogen gas. These results showed that the conversion does not occur by a linear alkyl radical addition mechanism wherein alkyl radicals migrate to stable polyene unsaturations and polyenyl radicals thereby increasing their order, as previously suggested. The valid mechanism appears to be the direct photoconversion of diene unsaturations to dienyl radicals and lower order polyenyl radicals to higher order polyenyl radicals.