Fischell Department of Bioengineering

Permanent URI for this communityhttp://hdl.handle.net/1903/6626

null

Browse

Search Results

Now showing 1 - 6 of 6
  • Thumbnail Image
    Item
    Chitosan to Connect Biology to Electronics: Fabricating the Bio-Device Interface and Communicating Across This Interface
    (MDPI, 2014-12-24) Kim, Eunkyoung; Xiong, Yuan; Cheng, Yi; Wu, Hsuan-Chen; Liu, Yi; Morrow, Brian H.; Ben-Yoav, Hadar; Ghodssi, Reza; Rubloff, Gary W.; Shen, Jana; Bentley, William E.; Shi, Xiaowen; Payne, Gregory F.
    Individually, advances in microelectronics and biology transformed the way we live our lives. However, there remain few examples in which biology and electronics have been interfaced to create synergistic capabilities. We believe there are two major challenges to the integration of biological components into microelectronic systems: (i) assembly of the biological components at an electrode address, and (ii) communication between the assembled biological components and the underlying electrode. Chitosan possesses a unique combination of properties to meet these challenges and serve as an effective bio-device interface material. For assembly, chitosan’s pH-responsive film-forming properties allow it to “recognize” electrode-imposed signals and respond by self-assembling as a stable hydrogel film through a cathodic electrodeposition mechanism. A separate anodic electrodeposition mechanism was recently reported and this also allows chitosan hydrogel films to be assembled at an electrode address. Protein-based biofunctionality can be conferred to electrodeposited films through a variety of physical, chemical and biological methods. For communication, we are investigating redox-active catechol-modified chitosan films as an interface to bridge redox-based communication between biology and an electrode. Despite significant progress over the last decade, many questions still remain which warrants even deeper study of chitosan’s structure, properties, and functions.
  • Thumbnail Image
    Item
    Catechol-Based Hydrogel for Chemical Information Processing
    (MDPI, 2017-07-03) Kim, Eunkyoung; Liu, Zhengchun; Liu, Yi; Bentley, William E.; Payne, Gregory F.
    Catechols offer diverse properties and are used in biology to perform various functions that range from adhesion (e.g., mussel proteins) to neurotransmission (e.g., dopamine), and mimicking the capabilities of biological catechols have yielded important new materials (e.g., polydopamine). It is well known that catechols are also redox-active and we have observed that biomimetic catechol-modified chitosan films are redox-active and possess interesting molecular electronic properties. In particular, these films can accept, store and donate electrons, and thus offer redox-capacitor capabilities. We are enlisting these capabilities to bridge communication between biology and electronics. Specifically, we are investigating an interactive redox-probing approach to access redox-based chemical information and convert this information into an electrical modality that facilitates analysis by methods from signal processing. In this review, we describe the broad vision and then cite recent examples in which the catechol–chitosan redox-capacitor can assist in accessing and understanding chemical information. Further, this redox-capacitor can be coupled with synthetic biology to enhance the power of chemical information processing. Potentially, the progress with this biomimetic catechol–chitosan film may even help in understanding how biology uses the redox properties of catechols for redox signaling.
  • Thumbnail Image
    Item
    The Binding Effect of Proteins on Medications and Its Impact on Electrochemical Sensing: Antipsychotic Clozapine as a Case Study
    (MDPI, 2017-08-01) Banis, George E.; Winkler, Thomas; Barton, Patricia; Chocron, Sheryl E.; Kim, Eunkyoung; Kelly, Deanna L.; Payne, Gregory F.; Ben-Yoav, Hadar; Ghodssi, Reza
    Clozapine (CLZ), a dibenzodiazepine, is demonstrated as the optimal antipsychotic for patients suffering from treatment-resistant schizophrenia. Like many other drugs, understanding the concentration of CLZ in a patient’s blood is critical for managing the patients’ symptoms, side effects, and overall treatment efficacy. To that end, various electrochemical techniques have been adapted due to their capabilities in concentration-dependent sensing. An open question associated with electrochemical CLZ monitoring is whether drug–protein complexes (i.e., CLZ bound to native blood proteins, such as serum albumin (SA) or alpha-1 acid-glycoprotein (AAG)) contribute to electrochemical redox signals. Here, we investigate CLZ-sensing performance using fundamental electrochemical methods with respect to the impact of protein binding. Specifically, we test the activity of bound and free fractions of a mixture of CLZ and either bovine SA or human AAG. Results suggest that bound complexes do not significantly contribute to the electrochemical signal for mixtures of CLZ with AAG or SA. Moreover, the fraction of CLZ bound to protein is relatively constant at 31% (AAG) and 73% (SA) in isolation with varying concentrations of CLZ. Thus, electrochemical sensing can enable direct monitoring of only the unbound CLZ, previously only accessible via equilibrium dialysis. The methods utilized in this work offer potential as a blueprint in developing electrochemical sensors for application to other redox-active medications with high protein binding more generally. This demonstrates that electrochemical sensing can be a new tool in accessing information not easily available previously, useful toward optimizing treatment regimens.
  • Thumbnail Image
    Item
    The Binding Effect of Proteins on Medications and Its Impact on Electrochemical Sensing: Antipsychotic Clozapine as a Case Study
    (Multidisciplinary Digital Publishing Institute (MDPI), 2017-08-01) Banis, George E.; Winkler, Thomas; Barton, Patricia; Chocron, Sheryl E.; Kim, Eunkyoung; Kelly, Deanna L.; Payne, Gregory F.; Ben-Yoav, Hadar; Ghodssi, Reza
    Clozapine (CLZ), a dibenzodiazepine, is demonstrated as the optimal antipsychotic for patients suffering from treatment-resistant schizophrenia. Like many other drugs, understanding the concentration of CLZ in a patient’s blood is critical for managing the patients’ symptoms, side effects, and overall treatment efficacy. To that end, various electrochemical techniques have been adapted due to their capabilities in concentration-dependent sensing. An open question associated with electrochemical CLZ monitoring is whether drug–protein complexes (i.e., CLZ bound to native blood proteins, such as serum albumin (SA) or alpha-1 acid-glycoprotein (AAG)) contribute to electrochemical redox signals. Here, we investigate CLZ-sensing performance using fundamental electrochemical methods with respect to the impact of protein binding. Specifically, we test the activity of bound and free fractions of a mixture of CLZ and either bovine SA or human AAG. Results suggest that bound complexes do not significantly contribute to the electrochemical signal for mixtures of CLZ with AAG or SA. Moreover, the fraction of CLZ bound to protein is relatively constant at 31% (AAG) and 73% (SA) in isolation with varying concentrations of CLZ. Thus, electrochemical sensing can enable direct monitoring of only the unbound CLZ, previously only accessible via equilibrium dialysis. The methods utilized in this work offer potential as a blueprint in developing electrochemical sensors for application to other redox-active medications with high protein binding more generally. This demonstrates that electrochemical sensing can be a new tool in accessing information not easily available previously, useful toward optimizing treatment regimens.
  • Thumbnail Image
    Item
    Microsystems Integration Towards Point-of-Care Monitoring of Clozapine Treatment for Adherence, Efficacy, and Safety
    (2017) Winkler, Thomas E.; Ghodssi, Reza; Bioengineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Schizophrenia is a challenging and complex disorder with 30–50% of patients not responding to first line antipsychotic treatment. Clozapine is the only antipsychotic approved by the FDA for treatment-resistant schizophrenia and is the most effective antipsychotic medication currently available. Yet, clozapine remains underutilized because of the requirements for frequent invasive and burdensome monitoring to 1) titrate doses to achieve effective blood levels, as well as 2) monitor white blood cells on a weekly basis for the first six months due to risk of agranulocytosis, a rare but potentially fatal side effect of clozapine. These blood draws, and the time lag in receiving reports from central labs, can add several more visits to the caregivers' treatment plan, which may not be feasible for the patient nor the treatment team. This contributes to a very low prescription rate for clozapine, making it one of the most underutilized evidence-based treatments in the field of mental health. The objective of this work is to progress toward a point-of-care approach to monitor both white blood cells and clozapine within a clinical setting. This would significantly lower the burden associated with clozapine treatment by allowing both tests to be performed rapidly during a single doctor's office visit or at the pharmacy. Specifically, I have developed and studied novel clozapine detection schemes based on electrochemical signal amplification in chitosan-based films. Moreover, I have investigated impedance cytometry coupled with hydrodynamic focusing and osmotic lysis to provide label- and reagent-free differential white blood cell counting capabilities. Finally, I have integrated the components in a microsystem capable of concurrent sensing of both biomarkers in whole blood samples. This proof-of-concept device lays the foundation for a fully integrated and automated lab-on-a-chip for point-of-care or even at-home testing to ensure treatment adherence, efficacy, and safety. This will allow for broader use of clozapine by increasing convenience to patients as well as medical professionals, thus improving the lives of people affected by schizophrenia through personalized medicine.
  • Thumbnail Image
    Item
    Bridging the biology-electronics communication gap with redox signaling
    (2015) Gordonov, Tanya; Bentley, William E; Bioengineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Electronic and biological systems both have the ability to sense, respond to, and communicate relevant data. This dissertation aims to facilitate communication between the two and create bio-hybrid devices that can process the breadths of both electronic and biological information. We describe the development of novel methods that bridge this bi-directional communication gap through the use of electronically and biologically relevant redox molecules for controlled and quantitative information transfer. Additionally, we demonstrate that the incorporation of biological components onto microelectronic systems can open doors for improved capabilities in a variety of fields. First, we describe the original use of redox molecules to electronically control the activity of an enzyme on a chip. Using biofabrication techniques, we assembled HLPT, a fusion protein which generates the quorum sensing molecule autoinducer-2, on an electrodeposited chitosan film on top of an electrode. This allows the electrode to controllably oxidize the enzyme in situ through a redox mediator, acetosyringone. We successfully showed that activity decrease and bacterial quorum sensing response are proportional to the input charge. To engineer bio-electronic communication with cells, we first aimed for better characterizing an electronic method for measuring cell response. We engineered Escherichia coli (E.coli) cells to respond to autoinducer-2 by producing the β-galactosidase enzyme. We then investigated an existing electrochemical method for detecting β-galactosidase activity by measuring a redox-active product of the cleavage of the added substrate molecule PAPG. In our novel findings, the product, PAP, was found to be produced at a rate that correlated with the standard spectrophotometric method for measuring β-galactosidase, the Miller assay, in both whole live and lysed cells. Conversely, to translate electronic signals to something cells can understand, we used pyocyanin, a redox drug which oxidizes the E.coli SoxR protein and allows transcription from the soxS promoter. We utilized electronic control of ferricyanide, an electron acceptor, to amplify the production of a reporter from soxS. With this novel method, we show that production of reporter depends on the frequency and amplitude of electronic signals, and investigate the method’s metabolic effects. Overall, the work in this dissertation makes strides towards the greater goal of creating multi-functional bio-hybrid devices.