Civil & Environmental Engineering

Permanent URI for this communityhttp://hdl.handle.net/1903/2221

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Development of a Fatigue Life Assessment Model for Pairing Fatigue Damage Prognoses with Bridge Management Systems
    (IntechOpen, 2018-12-18) Saad, Timothy; Fu, Chung C.; Zhao, Gengwen; Xu, Chaoran
    Fatigue damage is one of the primary safety concerns for steel bridges reaching the end of their design life. Currently, US federal requirements mandate regular inspection of steel bridges for fatigue cracks; however, these inspections rely on visual inspection, which is subjective to the inspector’s physically inherent limitations. Structural health monitoring (SHM) can be implemented on bridges to collect data between inspection intervals and gather supplementary information on the bridges’ response to loads. Combining SHM with finite element analyses, this paper integrates two analysis methods to assess fatigue damage in the crack initiation and crack propagation periods of fatigue life. The crack initiation period is evaluated using S-N curves, a process that is currently used by the FHWA and AASHTO to assess fatigue damage. The crack propagation period is evaluated with linear elastic fracture mechanic-based finite element models, which have been widely used to predict steady-state crack growth behavior. Ultimately, the presented approach will determine the fatigue damage prognoses of steel bridge elements and damage prognoses are integrated with current condition state classifications used in bridge management systems. A case study is presented to demonstrate how this approach can be used to assess fatigue damage on an existing steel bridge.
  • Thumbnail Image
    Item
    Fatigue Assessment of Highway Bridges under Traffic Loading Using Microscopic Traffic Simulation
    (IntechOpen, 2018-11-13) Zhao, Gengwen; Fu, Chung C.; Lu, Yang; Saad, Timothy
    Fatigue is a common failure mode of steel bridges induced by truck traffic. Despite the deterioration caused by environmental factors, the increasing truck traffic volume and weight pose a premier threat to steel highway bridges. Given the uncertainties of the complicated traffic loading and the complexity of the bridge structure, fatigue evaluation based on field measurements under actual traffic flow is recommended. As the quality and the quantity of the available long-term traffic monitoring data and information have been improved, methodologies have been developed to obtain more realistic vehicular live load traffic. A case study of a steel interstate highway bridge using microscopic traffic simulation is presented herein. The knowledge of actual traffic loading may reduce the uncertainty involved in the evaluation of the load-carrying capacity, estimation of the rate of deterioration, and prediction of remaining fatigue life. This chapter demonstrates a systematic approach using traffic simulation and bridge health monitoring-based fatigue assessment.