Civil & Environmental Engineering
Permanent URI for this communityhttp://hdl.handle.net/1903/2221
Browse
3 results
Search Results
Item Impact of the Built Environment Measured at Multiple Levels on Nonmotorized Travel Behavior: An Ecological Approach to a Florida Case Study(MDPI, 2020-10-24) Mahmoudi, Jina; Zhang, LeiResearch continues to reveal the benefits of nonmotorized travel modes such as walking and bicycling. Therefore, identification of the factors that nurture these activities is essential in developing sustainable urban planning policies and designs. Among those factors are the built environment characteristics of the place of residence. To date, research on the role of the built environment in nonmotorized travel has focused on neighborhood-level factors. However, people do not stay within their neighborhoods; they live and work at a regional scale and travel to various destinations and distances each day. Nonetheless, little is known about the impact of built environment factors at larger spatial scales on nonmotorized travel behavior. Guided by the principles of the ecological model of behavior, this study investigates the role of the built environment at hierarchical spatial scales in nonmotorized travel behavior. Multilevel Structural Equation Models have been developed to comprehensively examine the complex links between the built environment and individuals’ nonmotorized travel. Findings indicate that built environment factors at multiple spatial scales can influence nonmotorized travel behavior. Thus, to promote walking and bicycling, more effective policies are those that include multilevel built environment and land use interventions and consider the overall physical form of urban areas.Item Health Impacts of the Built and Social Environments, and Travel Behavior: The Case of the Sunshine State(MDPI, 2022-07-26) Mahmoudi, Jina; Zhang, LeiAs physical inactivity statistics for the U.S. population show an alarming trend, many health problems have been increasing among Americans in recent decades. Thus, identification of the factors that influence people’s physical activity levels and health outcomes has become ever more essential to promote public health. The built envSFironment is among the main factors that impact individuals’ health outcomes. However, little is known about the health impacts of built environment factors at large geographical scales such as those of the metropolitan area of residence. Further, the health impacts of travel behavior such as telecommuting and teleshopping remain unclear. This study uses an ecological model framework to probe the roles of travel behavior and built as well as social environments at different spatial levels in health. Instrumental variable binary probit models have been developed to examine the complex interlinks between measures of travel behavior, physical activity levels, built and social environment characteristics, and individuals’ health outcomes. Findings indicate that built and social environment factors at different spatial levels, including the metropolitan area, are correlated with individuals’ health outcomes. Additionally, the findings suggest that increased levels of telecommuting and teleshopping within communities may lead to unfavorable health outcomes. The findings shed light on the most promising policy interventions that can promote public health through modifications targeting people’s travel choices as well as the built and social environments within urban areas.Item THE IMPACT OF MULTIPLE SPATIAL LEVELS OF THE BUILT ENVIRONMENT ON NONMOTORIZED TRAVEL BEHAVIOR AND HEALTH(2019) Mahmoudi, Jina; Zhang, Lei; Civil Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Over the past several decades, the primacy of the automobile in American travel culture has led to rising congestion and energy consumption levels, rampant air pollution, sprawled urban designs, pervasiveness of sedentary behaviors and lifestyles, and prevalence of many health problems. Nonmotorized modes of travel such as walking and bicycling are sustainable alternatives to the automobile and suitable remedies to the adverse environmental, economic, and health effects of automobile dependency. As research continues to reveal the many benefits of nonmotorized travel modes, identification of the factors that influence people’s levels of walking and bicycling has become essential in developing transportation planning policies and urban designs that nurture these activities, and thereby promote public health. Among such factors are the built environment characteristics of the place of residence. To date, research on the impact of the built environment on nonmotorized travel behavior has been focused on neighborhood-level factors. Nonetheless, people do not stay within their neighborhoods; they live and work at a regional scale and travel to different places and distances each day to access various destinations. Little is known, however, about the impact of built environment factors at larger scales including those representing the overall built environment of metropolitan areas on nonmotorized travel behavior and health status of residents. Guided by the principles of the ecological model of behavior, this dissertation systematically tests the impact of the built environment at hierarchical spatial scales on nonmotorized travel behavior and health outcomes. Advanced statistical techniques have been employed to develop integrated models allowing comprehensive examination of the complex interrelationships between the built environment, nonmotorized travel, and health. Through inclusion of built environment factors from larger spatial scales, this research sheds light on the overlooked impact of the macro-level built environment on nonmotorized travel and health. The findings indicate that built environment factors at various spatial scales—including the metropolitan area—can influence nonmotorized travel behavior and health outcomes of residents. Thus, to promote walking and bicycling and public health, more effective policies are those that include multilevel built environment and land use interventions and consider the overall physical form of urban areas.