Theses and Dissertations from UMD
Permanent URI for this communityhttp://hdl.handle.net/1903/2
New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a give thesis/dissertation in DRUM
More information is available at Theses and Dissertations at University of Maryland Libraries.
Browse
2 results
Search Results
Item Measurement of the cosmic-ray proton spectrum from 54 GeV to 9.5 TeV with the Fermi Large Area Telescope(2016) Green, David Michael; Hoffman, Kara; Hays, Elizabeth A; Physics; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Cosmic rays are a near-isotropic continuous flux of energetic particles of extraterrestrial origin. First discovered in 1912, cosmic rays span over 10 decades of energy and originate from Galactic and extragalactic sources. The Fermi Gamma-ray Space Telescope observations have recently confirmed supernova remnants (SNR) as a source class for Galactic cosmic-ray protons. Additionally, recent measurements made by AMS-02 of the cosmic-ray proton spectrum to 1.8 TeV in kinetic energy have shown an unexpected spectral break at 415 ± 117 GeV with a primary spectral index of −2.794±0.006 and a secondary spectral index of −2.702±0.047. The Fermi Large Area Telescope (LAT), one of two instruments on Fermi, has an ideal energy range for confirming a spectral break and extending a space-based cosmic-ray proton spectrum measurement to overlap with higher energy balloon-borne measurements. In this thesis, I present the measurement of the cosmic-ray proton spectrum from 54 GeV to 9.5 TeV with the Fermi-LAT. Using the LAT’s anti-coincidence detector and tracker as two independent measures of charge, I estimated a residual contamination in our proton data set of less than 5% primarily from cosmic-ray electrons and positrons. The LAT calorimeter provides an energy estimation of the electromagnetic fraction of an induced cosmic-ray proton shower. I use the charge and energy measurements to build instrument response functions, such as acceptance and response for the LAT, and measure cosmic-ray proton flux. I estimate the systematic uncertainties associated with the acceptance and the energy measurement. Using a broken power-law spectrum, I find a primary spectral index of −2.80 ± 0.03, a secondary spectral index of −2.60 ± 0.04, and an energy break of 467 ± 144 GeV. I discuss possible astrophysical and cosmic-ray physics interpretations for the observed spectral break.Item Efficient Spectrum Management for Mobile Ad Hoc Networks(2010) Jones, Leo Henry; Baecher, Gregory B; Civil Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)The successful deployment of advanced wireless network applications for defense, homeland security, and public safety depends on the availability of relatively interference-free spectrum. Setup and maintenance of mobile networks for military and civilian first-response units often requires temporary allocation of spectrum resources for operations of finite, but uncertain, duration. As currently practiced, this is a very labor-intensive process with direct parallels to project management. Given the wide range of real-time local variation in propagation conditions, spatial distribution of nodes, and evolving technical and mission priorities current human-in-the loop conflict resolution approaches seem untenable. If the conventional radio regulatory structure is strictly adhered to, demand for spectrum will soon exceed supply. Software defined radio is one technology with potential to exploit local inefficiencies in spectrum usage, but questions regarding the management of such network have persisted for years. This dissertation examines a real-time spectrum distribution approach that is based on principles of economic utility and equilibrium among multiple competitors for limited goods in a free market. The spectrum distribution problem may be viewed as a special case of multi-objective optimization of a constrained resource. A computer simulation was developed to create hundreds of cases of local spectrum crowding, to which simultaneous perturbation simulated annealing (SPSA) was applied as a nominal optimization algorithm. Two control architectures were modeled for comparison, one requiring a local monitoring infrastructure and coordination ("top down") the other more market based ("bottom up"). The analysis described herein indicates that in both cases "hands-off" local spectrum management by trusted algorithms is not only feasible, but that conditions of entry for new networks may be determined a priori, with a degree of confidence described by relatively simple algebraic formulas.