Theses and Dissertations from UMD

Permanent URI for this communityhttp://hdl.handle.net/1903/2

New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a give thesis/dissertation in DRUM

More information is available at Theses and Dissertations at University of Maryland Libraries.

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    TACTILE SENSING WITH COMPLIANT STRUCTURES FOR HUMAN-ROBOT INTERACTION
    (2018) Chen, Ying; Yu, Miao; Smela, Elisabeth; Mechanical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    This dissertation presents the research on tactile sensing with compliant structures towards human-robot interaction. It would be beneficial for robots working collaboratively with humans to be soft or padded and have compliant tactile sensing skins over the padding. To allow the robots to interact with humans via touch effectively and safely and to detect tactile stimuli in an unstructured environment, new tactile sensing concepts are needed that can detect a wide range of potential interactions and sense over an area. However, most highly sensitive tactile sensors are unable to cover the forces involved in human contacts, which ranges from 1 newton to thousand newtons; to implement area sensing capabilities, there have been challenges in creating traditional sensing arrays, where the associated supporting electronics become more complex with an increasing number of sensing elements. This dissertation develops a novel multi-layer cutaneous tactile sensing architecture for enhanced sensitivity and range, and employs an imaging technique based on boundary measurements called electrical impedance tomography (EIT) to achieve area tactile sensing capabilities. The multi-layer cutaneous tactile sensing architecture, which consists of stretchable piezoresistive strain-sensing layers over foam padding layers of different stiffness, allows for both sufficient sensitivity and an extended force range for human contacts. The role that the padding layer plays when placed under a stretchable sensing layer was investigated, and it was discovered that the padding layer magnifies the sensor signal under indentation compared to that obtained without padding layers. The roles of the multi-layer foams were investigated by changing stiffness and thickness, which allows tailoring the response of multi-layer architectures for different applications. To achieve both extended force range and distributed sensing, EIT technique was employed with the multi-layer sensing architecture. Machine and human touch were conducted on the developed multi-layer sensing system, revealing that the second sensing skin is required to detect the large variability in human touch. Although widely applied in the medical field for functional imaging, EIT applied in tactile sensing faces different challenges, such as unknown number and region of tactile stimuli. Current EIT tactile sensors have focused on qualitative demonstration. This dissertation aims at achieving quantitative information from piezoresistive EIT tactile sensors, by investigating spatial performance and the effect of sensor’s conductivity. A spatial correction method was developed for obtaining consistent spatial information, which was validated by both simulation and experiments from our stretchable piezoresistive EIT sensor with an underlying padding layer.
  • Thumbnail Image
    Item
    Convection and Flow Boiling in Microgaps and Porous Foam Coolers
    (2007-10-05) Kim, Dae Whan; Bar-Cohen, Avram; Han, Bongtae; Mechanical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    An open and foam-filled microgap cooler, providing direct liquid cooling for a simulated electronic/photonic component and which eliminates the problematic thermal resistance of the commonly-used thermal interface material (TIM), is examined. The single phase heat transfer and pressure drop results of water are used to validate a detailed numerical model and, together with the convective FC-72 data, establish a baseline for microgap cooler performance. The two-phase heat transfer characteristics of FC-72 are examined at various microgap dimensions, heat fluxes, and mass fluxes and the results are projected onto a flow regime map. Infrared (IR) thermography is used to explore the two-phase characteristic of FC-72 inside the channel instantaneously. Also the single and two-phase heat transfer and pressure drop of porous metal foam which can enhance the cooling capability of low conductive fluid are studied and compared with the performance of the open channel microgap cooler in terms of volumetric heat transfer rate and required pumping power. The single-phase experimental results were in good agreement (within 10% error) with classical correlation of single-phase heat transfer coefficient and pressure drop in micro single gap channel with heat transfer coefficients as high as 23 kW/m2-K at 260 µm gap with water and 5 kW/m2-K at 110 µm gap with FC-72. Annular flow was found to dominate the two-phase behavior in the open channel yielding FC-72 heat transfer coefficients as high as 10 kW/m2-K at 110 µm gap channel. The single-phase pressure drop and heat transfer coefficient experimental results are compared with existing correlations and achieved 10 kW/m2-K of heat transfer coefficient at 95% porosity and 20PPI with water and 2.85 kW/m2-K with FC-72 at the same configuration. For the two-phase flow boiling, it is found that large pore size provides better cooling capability.