Theses and Dissertations from UMD
Permanent URI for this communityhttp://hdl.handle.net/1903/2
New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a give thesis/dissertation in DRUM
More information is available at Theses and Dissertations at University of Maryland Libraries.
Browse
12 results
Search Results
Item Adoption of Restorative Justice Practices in Student Conduct(2017) Kimball, Heather Renee; Espino Lira, Michelle M; Education Policy, and Leadership; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)This study examines the growing trend of colleges and universities adopting restorative justice practices in student conduct. Employing a diffusion of innovations framework and a multiple case study approach, the author offers an in-depth understanding of the decision-making processes and influences at two institutions that have adopted restorative justice in their student conduct practices. The findings of this study have implications for advocates of restorative justice seeking to understand how colleges and universities are deciding to adopt restorative justice and what conditions affect that decision, as well as for individuals who are assessing whether their institution is a good fit for adopting restorative justice principles. The study also contributes more broadly to diffusion of innovations literature through its application of the theory to organizations, specifically higher education institutions.Item EFFECTS OF EXTERNAL PRESSURE ON SOLID STATE DIFFUSION OF LITHIUM IN LITHIUM-ION BATTERIES(2016) Williard, Nicholas Dane; Pecht, Michael; Mechanical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Electrochemical-mechanical effects in lithium-ion batteries refer to the phenomena that give way to the piezo-electrochemical properties observed during intercalation of lithium into lithium-ion battery electrodes. By applying perturbations to the external pressure of a lithium-ion battery, the dynamics of lithium intercalation, in particular the diffusion rate of lithium-ions onto and out of battery electrodes, can be studied with respect to the open-circuit potential and the applied hydrostatic pressure. In this study, commercial thin film batteries were subjected to tests in a low-pressure chamber and in a dynamic materials analyzer simulating hydrostatic pressures between 0 and 115 KPa. Under each hydrostatic pressure condition, galvanostatic intermittent titration technique (GITT) was performed to measure and correlate lithium diffusivity to battery strain, open-circuit potential, and applied hydrostatic force. From the data a model was developed for lithium diffusivity as a function of open circuit potential and hydrostatic pressure. The implications of this work extend from the use of lithiated graphite for energy harvesting and actuation to policy and regulations for how batteries should be safely transported. To provide some insight into how this work can be applied to policy actions, current international regulations regarding the air transport of lithium-ion batteries are critically reviewed. The pre-shipping tests are outlined and evaluated to assess their ability to fully mitigate risks during battery transport. In particular, the guidelines for shipping second-use batteries are considered. Because the electrochemical state of previously used batteries is inherently different from that of new batteries, additional considerations must be made to evaluate these types of cells. Additional tests are suggested that evaluate the risks of second-use batteries, which may or may not contain incipient faults. Finally, this work is extended to supercapacitors through the development of a model to predict the oxidation of functional groups on the surface of graphite electrodes with respect to operational temperature and voltage. This model is used to predict the operational life of supercapacitors and validates the model on accelerated testing data. The final results are compared to previous models proposed in literature.Item Diffusion Dynamics in Interconnected Communities(2015) Wei, Xiaoya; Abed, Eyad H.; Electrical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)In this dissertation, multi-community-based Susceptible-Infected-Recovered (SIR) and Susceptible-Infected-Susceptible (SIS) models of infection/innovation diffusion are introduced for heterogeneous social networks in which agents are viewed as belonging to one of a finite number of communities. Agents are assumed to have well-mixed interactions within and between communities. The communities are connected through a backbone graph which defines an overall network structure for the models. The models are used to determine conditions for outbreak of an initial infection. The role of the strengths of the connections between communities in the development of an outbreak as well as long-term behavior of the diffusion is also studied. Percolation theory is brought to bear on these questions as an independent approach separate from the main dynamic multi-community modeling approach of the dissertation. Results obtained using both approaches are compared and found to be in agreement in the limit of infinitely large populations in all communities. Based on the proposed models, three classes of marketing problems are formulated and studied: referral marketing, seeding marketing and dynamic marketing. It is found that referral marketing can be optimized relatively easily because the associated optimization problem can be formulated as a convex optimization. Also, both seeding marketing and dynamic marketing are shown to enjoy a useful property, namely ``continuous monotone submodularity." Based on this property, a greedy heuristic is proposed which yields solutions with approximation ratio no less than 1-1/e. Also, dynamic marketing for SIS models is reformulated into an equivalent convex optimization to obtain an optimal solution. Both cost minimization and trade-off of cost and profit are analyzed. Next, the proposed modeling framework is applied to study competition of multiple companies in marketing of similar products. Marketing of two classes of such products are considered, namely marketing of durable consumer goods (DCG) and fast-moving consumer goods (FMCG). It is shown that an epsilon-equilibrium exists in the DCG marketing game and a pure Nash equilibrium exists in the FMCG marketing game. The Price of Anarchy (PoA) in both marketing games is found to be bounded by 2. Also, it is shown that any two Nash equilibria for the FMCG marketing game agree almost everywhere, and a distributed algorithm converging to the Nash equilibrium is designed for the FMCG marketing game. Finally, a preliminary investigation is carried out to explore possible concepts of network centrality for diffusions. In a diffusion process, the centrality of a node should reflect the influence that the node has on the network over time. Among the preliminary observations in this work, it is found that when an infection does not break out, diffusion centrality is closely related to Katz centrality; when an infection does break out, diffusion centrality is closely related to eigenvector centrality.Item Gasification and Combustion of Large Char Particles and Tar(2015) Molintas, Henry; Gupta, Ashwani K; Mechanical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Although diffusion is known to play an important role for gasification and combustion of large char particles, their effects on conversion rates, kinetic parameters and other relevant factors have not been thoroughly analyzed. Similarly, tar reduction is not yet well understood. Central to these challenges is the shortage of experimental data for reduction of tar and large char particles. Likewise, analytical models for reduction processes have not been systematically examined. In this study, large char particles between 1.5 to 7 mm are gasified and combusted non-isothermally with initial temperatures up to 1000 degree celcius using various oxidants. Tar is also reduced with steam and vitiated air continuously and non-isothermally. In the absence of mathematical tools for large particle reduction analysis, models are proposed and derived in this study. Carbon and large near-spherically or irregularly shaped particles are modeled as large disk-shaped and spherically-shaped particles, respectively. One-film ash segregated core and random pore models are explored to analyze char reduction data and these are found to provide consistent and inconsistent results, respectively. Thiele analysis is also used and it indicates that less porous particles are consumed more externally at the surface than internally. For C + O2⇒ CO2 reductions, disk-shaped particles ignite when reactor temperature reaches 584 degree and these processes are purely kinetic controlled for 1.5 mm thick samples. Reduction of spherically-shaped particles shows that O2 enrichment as compared to a 50 degree celcius rise in reactor temperature substantially improves conversion. Oxygen enrichment with steam also significantly increases conversion of 5.5 mm thick disk-shaped particle up to 600 % under identical reactor conditions. For C + CO2⇒2CO reductions, conversion rates increased five-fold when reactor temperature is increased from 850 to 1000 degree Celsius. Increasing initial reactor temperatures and O2 enrichment provide an increase in char reactivity, diffusional rate, conversion, reduction rate and surface temperature. Most of the large particle reductions investigated here operate near kinetic-diffusion controlled regime. Calculated total energy released during combustion is within the range of Dulong’s empirical formula. At higher tar concentrations, CO and H2 production moderately increase between 814 to 875 degree celsius.Item QUANTATITIVE STUDY OF WATER DYNAMICS IN BIOMIMETIC MODELS AND LIVING TISSUE BY NMR AND MRI: PERSPECTIVES ON DIRECT DETECTION NEURONAL ACTIVITY(2015) Bai, Ruiliang; Briber, Robert M; Biophysics (BIPH); Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Detection of neuronal activity noninvasively and in vivo is a desideratum in medicine and in neuroscience. Unfortunately, the widely used method of functional magnetic resonance imaging (fMRI) only indirectly assesses neuronal activity via its hemodynamic response; limiting its temporal and spatial accuracy. Recently, several new fMRI methods have been proposed to measure neuronal activity claiming to be more direct and accurate. However, these approaches have proved difficult to reproduce and are not widely applied mainly because of a dearth of “ground truth” experiments that convincingly establish the correlation between the magnetic resonance (MR) signals and the underlying neuronal activity. In addition, limited knowledge of water dynamics in living tissue restricts our understanding of the underlying biophysical sources of these candidate fMRI signals. To address the first problem, we developed a novel test system to assess and validate fMRI methods, in which real-time fluorescent intracellular calcium images and MR recording were simultaneously acquired on organotypic rat-cortex cultures without hemodynamic confounds. This experimental design enables direct correlation of the candidate functional MR signals with optical indicia of the underlying neuronal activity. Within this test bed, MR signals with contrasts from water relaxation times, diffusion, and proton density were tested. Diffusion MR was the only one shown to be sensitive to the pathological condition of hyperexcitability, e.g., such as those seen in epilepsy. However, these MR signals do not appear to be sensitive or specific enough to detect and follow normal neuronal activity. Efforts were made toward improving our understanding of the water dynamics in living tissue. First, water diffusivities and relaxation times in a biomimetic model were measured and quantitatively studied using different biophysical-based mathematical models. Second, we developed and applied a rapid 2D diffusion/relaxation spectral MR method, to better characterize the heterogeneous nature of tissue water. While the present study is still far from providing a complete picture of water dynamics in living tissues, it provides novel tools for advancing our understanding of the possibilities and limits of detecting neuronal activity via MR in the future, as well as providing a reproducible and reliable way to assess and validate fMRI methods.Item INCORPORATING IDEAS OF DISPLACEMENT AND DIFFUSION OF BENEFITS INTO EVALUATIONS OF COUNTERTERRORISM POLICY(2015) Safer-Lichtenstein, Aaron; Dugan, Laura; Criminology and Criminal Justice; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Criminologists and terrorism specialists alike have conducted research on the deterrent effect of policies; however, to date, only criminologists have thoroughly examined the associated displacement of crime and diffusion of benefits. Using data from the Eco-Incidents Database, this study first examines the deterrent effect of government efforts targeting animal rights and environmental terrorism over several years. Next, it extends this application by examining non-terrorist actions by both terrorist groups and non-terrorist groups to see if deterrent actions have any unintended consequences. Results show no evidence of displacement, but rather that several government actions evidenced a diffusion of benefits. If anti-terrorist laws reduce other types of crime, particularly by non-terrorists, then this has policy implications for law enforcement strategies.Item Molecular basis of the kinematics of the kinesin step(2012) Zhang, Zhechun; Thirumalai, Devarajan; Biophysics (BIPH); Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Kinesin is an ATP-dependent cellular transporter that ferries cargos towards the plus-end of a microtubule. Despite significant advances in experiments, which have provided deep insights into the motility of kinesin, the molecular events that occur in a single step have not been fully resolved. In order to provide these details, this thesis develops a structure of the complex between kinesin and microtubule, and devises new simulation methods to probe the stepping kinetics over a wide range of conditions. Hundreds of molecular movies of kinesin walking on the microtubule are generated using coarse-grained simulation methods. Analysis of these movies shows that there are three major stages in the stepping kinetics of kinesin. In addition, an allosteric network within kinesin, responsible for controlling nucleotide release, is identified using microsecond all-atom simulations. These simulations are used to answer two important questions. First, does kinesin move by a "power stroke" or by diffusion? During a single step, the trailing head of the kinesin detaches from the microtubule, passes the microtubule-bound leading head, and attaches to the target binding site 16 nm away. The target binding site, however, is one of eight accessible binding sites on the microtubule. Is it possible that the "power stroke" (a large conformational change) in the leading head, pulls the trailing head into the neighborhood of the target binding site? This remained unclear because the fraction of the 16 nm step associated with the power stroke and diffusion had never been quantified. Second, how does the microtubule accelerate ADP release from kinesin, which is a key step in completing a single step? The ADP binding site of kinesin is more than 1.5 nm away from the microtubule binding surface. Therefore, the microtubule must affect the ADP binding site through an allosteric mechanism. However, the structural basis for transmitting signals through the underlying allosteric network was previously unknown. Analysis of hundreds of kinesin steps generated using coarse-grained simulations showed that the power stroke associated with the docking of the neck linker to the leading head, is responsible for only 4 nm of the 16 nm step, and the remaining 12 nm is covered by diffusion. However, the power stroke in the leading head constrains the diffusion of the trailing head, decreases the probability of side steps, and therefore biases the trailing head, to the target binding site. Additional all-atom simulations of the ADP-kinesin-microtubule complex, revealed a surprisingly simple allosteric network within kinesin that explains the acceleration of ADP release upon microtubule binding. The allosteric network also explains two additional experimental observations on ADP release from kinesin.Item SMOKE POINTS OF MICROGRAVITY AND NORMAL GRAVITY COFLOW DIFFUSION FLAMES(2009) Dotson, Keenan Thomas; Sunderland, Peter B; Fire Protection Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Smoke points were measured in microgravity aboard the International Space Station (ISS) as part of the Smoke Points in Coflow Experiment (SPICE), and in normal gravity conditions. In microgravity conditions increasing the coflow velocity or decreasing the burner diameter increased the smoke point flame length. A simplified prediction of centerline jet velocity did not yield residence-time-based criticalities or data collapse. Simulation of non-reacting flows showed that the simplified centerline velocity prediction was able to predict velocity decay for only relatively weak coflows. An improved model may yield different results. In normal earth gravity coflow velocity exhibited mixed effects. For burner diameters of 0.41, 0.76, and 1.6 mm, smoke points increased with increases of coflow velocity. For an unconfined coflow burner with a burner diameter of 13.7 mm smoke point length decreased with increasing coflow velocity for ethylene and propylene, while increasing for propane flames.Item Diffusion of Oxygen and Lithium Isotopes at a Contact between the Bushveld Complex and Metasedimentary Rock: Implications for the Timescale of Phepane Dome Diapirism(2009) Potter, Rachel; Penniston-Dorland, Sarah; Geology; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Within the Eastern Lobe of the Bushveld Complex, the Phepane Dome is a circular structure of metasedimentary rock hypothesized to have formed as a wallrock diapir. To constrain the duration of Phepane Dome formation using one-dimensional diffusion models of oxygen and lithium exchange between the Bushveld Complex and the Phepane Dome, samples taken across the contact between these two lithologies were measured for their O and Li isotopic compositions and Li concentrations. Models of O and Li diffusion through melt and through aqueous fluid were fit to the data, resulting in a diffusive distance of 1.0 m for oxygen and 14.1 m for lithium. Using experimentally constrained parameters for O and Li diffusion, a range of 2 kyrs to 2 Myrs was calculated from the diffusive distances. This is consistent with previous studies of the time for crystallization of the Bushveld Complex and a model of Phepane diapir development.Item Numerical Simulation of Low-Pressure Explosive Combustion in Compartment Fires(2008-11-19) Hu, Zhixin (Victor); Trouve, Arnaud; Mechanical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)A filtered progress variable approach is adopted for large eddy simulations (LES) of turbulent deflagrations. The deflagration model is coupled with a non-premixed combustion model, either an equilibrium-chemistry, mixture-fraction based model, or an eddy dissipation model. The coupling interface uses a LES-resolved flame index formulation and provides partially-premixed combustion (PPC) modeling capability. The PPC sub-model is implemented into the Fire Dynamic Simulator (FDS) developed by the National Institute of Standards and Technology, which is then applied to the study of explosive combustion in confined fuel vapor clouds. Current limitations of the PPC model are identified first in two separate series of simulations: 1) a series of simulation corresponding to laminar flame propagation across homogeneous mixtures in open or closed tunnel-like configurations; and 2) a grid refinement study corresponding to laminar flame propagation across a vertically-stratified layer. An experimental database previously developed by FM Global Research, featuring controlled ignition followed by explosive combustion in an enclosure filled with vertically-stratified mixtures of propane in air, is used as a test configuration for model validation. Sealed and vented configurations are both considered, with and without obstacles in the chamber. These pressurized combustion cases present a particular challenge to the bulk pressure algorithm in FDS, which has robustness, accuracy and stability issues, in particular in vented configurations. Two modified bulk pressure models are proposed and evaluated by comparison between measured and simulated pressure data in the Factory Mutual Global (FMG) test configuration. The first model is based on a modified bulk pressure algorithm and uses a simplified expression for pressure valid in a vented compartment under quasi-steady conditions. The second model is based on solving an ordinary differential equation for bulk pressure (including a relaxation term proposed to stabilize possible Helmholtz oscillations) and modified vent flow velocity boundary conditions that are made bulk-pressure-sensitive. Comparisons with experiments are encouraging and demonstrate the potential of the new modeling capability for simulations of low pressure explosions in stratified fuel vapor clouds.