Theses and Dissertations from UMD

Permanent URI for this communityhttp://hdl.handle.net/1903/2

New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a give thesis/dissertation in DRUM

More information is available at Theses and Dissertations at University of Maryland Libraries.

Browse

Search Results

Now showing 1 - 4 of 4
  • Thumbnail Image
    Item
    Enhancing Productivity and Performance Portability of General-Purpose Parallel Programming
    (2012) Tzannes, Alexandros; Baua, Rajeev; Vishkin, Uzi; Computer Science; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    This work focuses on compiler and run-time techniques for improving the productivity and the performance portability of general-purpose parallel programming. More specifically, we focus on shared-memory task-parallel languages, where the programmer explicitly exposes parallelism in the form of short tasks that may outnumber the cores by orders of magnitude. The compiler, the run-time, and the platform (henceforth the system) are responsible for harnessing this unpredictable amount of parallelism, which can vary from none to excessive, towards efficient execution. The challenge arises from the aspiration to support fine-grained irregular computations and nested parallelism. This work is even more ambitious by also aspiring to lay the foundations to efficiently support declarative code, where the programmer exposes all available parallelism, using high-level language constructs such as parallel loops, reducers or futures. The appeal of declarative code is twofold for general-purpose programming: it is often easier for the programmer who does not have to worry about the granularity of the exposed parallelism, and it achieves better performance portability by avoiding overfitting to a small range of platforms and inputs for which the programmer is coarsening. Furthermore, PRAM algorithms, an important class of parallel algorithms, naturally lend themselves to declarative programming, so supporting it is a necessary condition for capitalizing on the wealth of the PRAM theory. Unfortunately, declarative codes often expose such an overwhelming number of fine-grained tasks that existing systems fail to deliver performance. Our contributions can be partitioned into three components. First, we tackle the issue of coarsening, which declarative code leaves to the system. We identify two goals of coarsening and advocate tackling them separately, using static compiler transformations for one and dynamic run-time approaches for the other. Additionally, we present evidence that the current practice of burdening the programmer with coarsening either leads to codes with poor performance-portability, or to a significantly increased programming effort. This is a ``show-stopper'' for general-purpose programming. To compare the performance portability among approaches, we define an experimental framework and two metrics, and we demonstrate that our approaches are preferable. We close the chapter on coarsening by presenting compiler transformations that automatically coarsen some types of very fine-grained codes. Second, we propose Lazy Scheduling, an innovative run-time scheduling technique that infers the platform load at run-time, using information already maintained. Based on the inferred load, Lazy Scheduling adapts the amount of available parallelism it exposes for parallel execution and, thus, saves parallelism overheads that existing approaches pay. We implement Lazy Scheduling and present experimental results on four different platforms. The results show that Lazy Scheduling is vastly superior for declarative codes and competitive, if not better, for coarsened codes. Moreover, Lazy Scheduling is also superior in terms of performance-portability, supporting our thesis that it is possible to achieve reasonable efficiency and performance portability with declarative codes. Finally, we also implement Lazy Scheduling on XMT, an experimental manycore platform developed at the University of Maryland, which was designed to support codes derived from PRAM algorithms. On XMT, we manage to harness the existing hardware support for scheduling flat parallelism to compose it with Lazy Scheduling, which supports nested parallelism. In the resulting hybrid scheduler, the hardware and software work in synergy to overcome each other's weaknesses. We show the performance composability of the hardware and software schedulers, both in an abstract cost model and experimentally, as the hybrid always performs better than the software scheduler alone. Furthermore, the cost model is validated by using it to predict if it is preferable to execute a code sequentially, with outer parallelism, or with nested parallelism, depending on the input, the available hardware parallelism and the calling context of the parallel code.
  • Thumbnail Image
    Item
    Optimizing for a Many-Core Architecture without Compromising Ease-of-Programming
    (2011) Caragea, George Constantin; Vishkin, Uzi; Barua, Rajeev; Computer Science; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Faced with nearly stagnant clock speed advances, chip manufacturers have turned to parallelism as the source for continuing performance improvements. But even though numerous parallel architectures have already been brought to market, a universally accepted methodology for programming them for general purpose applications has yet to emerge. Existing solutions tend to be hardware-specific, rendering them difficult to use for the majority of application programmers and domain experts, and not providing scalability guarantees for future generations of the hardware. This dissertation advances the validation of the following thesis: it is possible to develop efficient general-purpose programs for a many-core platform using a model recognized for its simplicity. To prove this thesis, we refer to the eXplicit Multi-Threading (XMT) architecture designed and built at the University of Maryland. XMT is an attempt at re-inventing parallel computing with a solid theoretical foundation and an aggressive scalable design. Algorithmically, XMT is inspired by the PRAM (Parallel Random Access Machine) model and the architecture design is focused on reducing inter-task communication and synchronization overheads and providing an easy-to-program parallel model. This thesis builds upon the existing XMT infrastructure to improve support for efficient execution with a focus on ease-of-programming. Our contributions aim at reducing the programmer's effort in developing XMT applications and improving the overall performance. More concretely, we: (1) present a work-flow guiding programmers to produce efficient parallel solutions starting from a high-level problem; (2) introduce an analytical performance model for XMT programs and provide a methodology to project running time from an implementation; (3) propose and evaluate RAP -- an improved resource-aware compiler loop prefetching algorithm targeted at fine-grained many-core architectures; we demonstrate performance improvements of up to 34.79% on average over the GCC loop prefetching implementation and up to 24.61% on average over a simple hardware prefetching scheme; and (4) implement a number of parallel benchmarks and evaluate the overall performance of XMT relative to existing serial and parallel solutions, showing speedups of up to 13.89x vs.~ a serial processor and 8.10x vs.~parallel code optimized for an existing many-core (GPU). We also discuss the implementation and optimization of the Max-Flow algorithm on XMT, a problem which is among the more advanced in terms of complexity, benchmarking and research interest in the parallel algorithms community. We demonstrate better speed-ups compared to a best serial solution than previous attempts on other parallel platforms.
  • Thumbnail Image
    Item
    Preventing Buffer Overflows with Binary Rewriting
    (2010) O'Sullivan, Padraig; Barua, Rajeev; Electrical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Buffer overflows are the single largest cause of security attacks in recent times. Attacks based on this vulnerability have been the subject of extensive research and a significant number of defenses have been proposed for dealing with attacks of this nature. However, despite this extensive research, buffer overflows continue to be exploited due to the fact that many defenses proposed in prior research provide only partial coverage and attackers have adopted to exploit problems that are not well defended. The fact that many legacy binaries are still deployed in production environments also contributes to the success of buffer overflow attacks since most, if not all, buffer overflow defenses are source level defenses which require an application to be re-compiled. For many legacy applications, this may not be possible since the source code may no longer be available. In this thesis, we present an implementation of a defense mechanism for defending against various attack forms due to buffer overflows using binary rewriting. We study various attacks that happen in the real world and present techniques that can be employed within a binary rewriter to protect a binary from these attacks. Binary rewriting is a nascent field and little research has been done regarding the applications of binary rewriting. In particular, there is great potential for applications of binary rewriting in software security. With a binary rewriter, a vulnerable application can be immediately secured without the need for access to it's source code which allows legacy binaries to be secured. Also, numerous attacks on application software assume that application binaries are laid out in certain ways or have certain characteristics. Our defense scheme implemented using binary rewriting technology can prevent many of these attacks. We demonstrate the effectiveness of our scheme in preventing many different attack forms based on buffer overflows on both synthetic benchmarks and real-world attacks.
  • Thumbnail Image
    Item
    Compiler-Decided Dynamic Memory Allocation for Scratch-Pad Based Embedded Systems
    (2006-07-27) udayakumaran, sumesh; Barua, Rajeev; Electrical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    In this research we propose a highly predictable, low overhead and yet dynamic, memory allocation strategy for embedded systems with scratch-pad memory. A scratch-pad is a fast compiler-managed SRAM memory that replaces the hardware-managed cache. It is motivated by its better real-time guarantees vs cache and by its significantly lower overheads in energy consumption, area and overall runtime, even with a simple allocation scheme. Scratch-pad allocation methods primarily are of two types. First, software-caching schemes emulate the workings of a hardware cache in software. Instructions are inserted before each load/store to check the software-maintained cache tags. Such methods incur large overheads in runtime, code size, energy consumption and SRAM space for tags and deliver poor real-time guarantees, just like hardware caches. A second category of algorithms partitions variables at compile-time into the two banks. However, a drawback of such static allocation schemes is that they do not account for dynamic program behavior. We propose a dynamic allocation methodology for global and stack data and program code that (i) accounts for changing program requirements at runtime (ii) has no software-caching tags (iii) requires no run-time checks (iv) has extremely low overheads, and (v) yields 100% predictable memory access times. In this method data that is about to be accessed frequently is copied into the scratch-pad using compiler-inserted code at fixed and infrequent points in the program. Earlier data is evicted if necessary. When compared to an existing static allocation scheme, results show that our scheme reduces runtime by up to 39.8% and energy by up to 31.3% on average for our benchmarks, depending on the SRAM size used. The actual gain depends on the SRAM size, but our results show that close to the maximum benefit in run-time and energy is achieved for a substantial range of small SRAM sizes commonly found in embedded systems. Our comparison with a direct mapped cache shows that our method performs roughly as well as a cached architecture in runtime and energy while delivering better real-time benefits.