Theses and Dissertations from UMD

Permanent URI for this communityhttp://hdl.handle.net/1903/2

New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a give thesis/dissertation in DRUM

More information is available at Theses and Dissertations at University of Maryland Libraries.

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Using Locality and Interleaving Information to Improve Shared Cache Performance
    (2009) Liu, Wanli; Yeung, Donald; Electrical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    The cache interference is found to play a critical role in optimizing cache allocation among concurrent threads for shared cache. Conventional LRU policy usually works well for low interference workloads, while high cache interference among threads demands explicit allocation regulation, such as cache partitioning. Cache interference is shown to be tied to inter-thread memory reference interleaving granularity: high interference is caused by ne-grain interleaving while low interference is caused coarse-grain interleaving. Proling of real multi-program workloads shows that cache set mapping and temporal phase result in the variation of interleaving granularity. When memory references from dierent threads map to disjoint cache sets, or they occur in distinct time windows, they tend to cause little interference due to coarse-grain interleaving. The interleaving granularity measured by runlength in workloads is found to correlate with the preference of cache management policy: ne-grain interleaving workloads perform better with cache partitioning, and coarse-grain interleaving workloads perform better with LRU. Most existing shared cache management techniques are based on working set locality analysis. This dissertation studies the shared cache performance by taking both locality and interleaving information into consideration. Oracle algorithm which provides theoretical best performance is investigated to provide insight into how to design a better practical policy. Proling and analysis of Oracle algorithm lead to the proposal of probabilistic replacement (PR), a novel cache allocation policy. With aggressor threads information learned on-line, PR evicts the bad locality blocks of aggressor threads probabilistically while preserving good locality blocks of non-aggressor threads. PR is shown to be able to adapt to the different interleaving granularities in different sets over time. Its flexibility in tuning eviction probability also improves fairness among thread performance. Evaluation indicates that PR outperforms LRU, UCP, and ideal cache partitioning at moderate hardware cost. For single program cache management, this dissertation also proposes a novel technique: reuse distance last touch predictor (RD-LTP). RD-LTP is able to capture reuse distance information, which represents the intrinsic memory reference pattern. Based on this improved LT predictor, an MRU LT eviction policy is developed to select the right victim at the presence of incorrect LT prediction. In addition to LT predictor, another predictor: reuse distance predictors (RDPs) is proposed, which is able to predict actual reuse distance values. Compared to various existing cache management techniques, these two novel predictors deliver higher cache performance with higher prediction coverage and accuracy at moderate hardware cost.
  • Thumbnail Image
    Item
    Compiler-Decided Dynamic Memory Allocation for Scratch-Pad Based Embedded Systems
    (2006-07-27) udayakumaran, sumesh; Barua, Rajeev; Electrical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    In this research we propose a highly predictable, low overhead and yet dynamic, memory allocation strategy for embedded systems with scratch-pad memory. A scratch-pad is a fast compiler-managed SRAM memory that replaces the hardware-managed cache. It is motivated by its better real-time guarantees vs cache and by its significantly lower overheads in energy consumption, area and overall runtime, even with a simple allocation scheme. Scratch-pad allocation methods primarily are of two types. First, software-caching schemes emulate the workings of a hardware cache in software. Instructions are inserted before each load/store to check the software-maintained cache tags. Such methods incur large overheads in runtime, code size, energy consumption and SRAM space for tags and deliver poor real-time guarantees, just like hardware caches. A second category of algorithms partitions variables at compile-time into the two banks. However, a drawback of such static allocation schemes is that they do not account for dynamic program behavior. We propose a dynamic allocation methodology for global and stack data and program code that (i) accounts for changing program requirements at runtime (ii) has no software-caching tags (iii) requires no run-time checks (iv) has extremely low overheads, and (v) yields 100% predictable memory access times. In this method data that is about to be accessed frequently is copied into the scratch-pad using compiler-inserted code at fixed and infrequent points in the program. Earlier data is evicted if necessary. When compared to an existing static allocation scheme, results show that our scheme reduces runtime by up to 39.8% and energy by up to 31.3% on average for our benchmarks, depending on the SRAM size used. The actual gain depends on the SRAM size, but our results show that close to the maximum benefit in run-time and energy is achieved for a substantial range of small SRAM sizes commonly found in embedded systems. Our comparison with a direct mapped cache shows that our method performs roughly as well as a cached architecture in runtime and energy while delivering better real-time benefits.