Theses and Dissertations from UMD

Permanent URI for this communityhttp://hdl.handle.net/1903/2

New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a give thesis/dissertation in DRUM

More information is available at Theses and Dissertations at University of Maryland Libraries.

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Quantum Computing with Fluxonium: Digital and Analog Directions
    (2022) Somoroff, Aaron; Manucharyan, Vladimir E; Physics; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    This dissertation explores quantum computing applications of fluxonium superconductingcircuits. Fluxonium’s high coherence time T2 and anharmonicity make it an excellent platform for both digital quantum processors and analog quantum simulators. Focusing on the digital quantum computing applications, we report recent work on improving the T2 and gate error rates of fluxonium qubits. Through enhancements in fabrication methods and engineering of fluxonium’s spectrum, a coherence time in excess of 1 millisecond is achieved, setting a new standard for the most coherent superconducting qubit. This highly coherent device is used to demonstrate a single-qubit gate fidelity greater than 99.99%, a level of control that had not been observed until now in a solid state quantum system. Utilizing the high energy relaxation time T1 of the qubit transition, a novel measurement of the circuit’s parity-protected 0-2 transition relaxation time is performed to extract additional sources of energy loss. To demonstrate fluxonium’s utility as a building block for analog quantum simulators,we investigate how to simulate quantum dynamics in the Transverse-Field Ising Model (TFIM) by inductively coupling 10 fluxonium circuits together. When the fluxonium loops are biased at half integer values of the magnetic flux quantum, the spectrum is highly anharmonic, and the qubit transition is well-approximated by a spin-1/2. This results in an effective Hamiltonian that is equivalent to the TFIM. By tuning the inter-qubit coupling across multiple devices, we can explore different regimes of the TFIM, establishing fluxonium as a prominent candidate for use in near-term quantum many-body simulations.
  • Thumbnail Image
    Item
    Nonlinear Optics Quantum Computation and Quantum Simulation with Circuit-QED
    (2014) Adhikari, Prabin; Taylor, Jacob M.; Physics; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Superconducting quantum circuits are a promising approach for realizations of large scale quantum information processing and quantum simulations. The Josephson junction, which forms the basis of superconducting circuits, is the only known nonlinear non-dissipative circuit element, and its inherent nonlinearities have found many different applications. In this thesis I discuss specific implementations of these circuits. I show that strong two-photon nonlinearities can be induced by coupling photons in the microwave domain to Josephson nonlinearities. I then propose a method to simulate a parent Hamiltonian that can potentially be used to observe fractional quantum Hall states of light. I will also explore how superconducting circuits can be used to modify system-bath couplings to emulate a chemical potential for photons. Finally, I consider the limitations of devising a scheme to couple superconducting circuits to trapped ions, and consider the challenges for such hybrid approaches.