Theses and Dissertations from UMD

Permanent URI for this communityhttp://hdl.handle.net/1903/2

New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a give thesis/dissertation in DRUM

More information is available at Theses and Dissertations at University of Maryland Libraries.

Browse

Search Results

Now showing 1 - 8 of 8
  • Thumbnail Image
    Item
    ATOMIC LAYER DEPOSITION OF LEAD ZIRCONATE-TITANATE AND OTHER LEAD-BASED PEROVSKITES
    (2019) Strnad, Nicholas Anthony; Phaneuf, Raymond J; Polcawich, Ronald G; Material Science and Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Lead-based perovskites, especially lead zirconate-titanate (PbZrxTi1-xO3, or PZT), have been of great technological interest since they were discovered in the early 1950s to exhibit large electronic polarization. Atomic layer deposition (ALD) is a thin-film growth technique capable of uniformly coating high aspect-ratio structures due to the self-limited nature of the precursor chemisorption steps in the deposition sequence. In this thesis, a suite of related processes to grow lead-based perovskites by ALD are presented. First, a new process to grow ferroelectric lead titanate (PbTiO3, or PTO) by ALD using lead bis(3-N,N-dimethyl-2-methyl-2-propanoxide) [Pb(DMAMP)2] and tetrakis dimethylamino titanium [TDMAT] as the lead and titanium cation precursors, respectively, is discussed. A 360-nm thick PTO film grown by ALD displayed a maximum polarization of 48 µC/cm2 and remanent polarization of ±30 µC/cm2. Second, a new process (similar to the ALD PTO process) to grow PZT by ALD is demonstrated by partial substitution of TDMAT with either tetrakis dimethylamino zirconium or zirconium tert-butoxide. The 200 nm-thick ALD PZT films exhibited a maximum polarization of 50 µC/cm2 and zero-field dielectric constant of 545 with leakage current density < 0.7 µA/cm2. Third, a new ALD process for antiferroelectric lead hafnate (PbHfO3, or PHO) is presented along with electrical characterization showing a field-induced antiferroelectric to ferroelectric phase transition with applications for capacitive energy storage. Finally, ALD lead hafnate-titanate (PbHfxTi1-xO3, or PHT), considered to be an isomorph of PZT, is demonstrated by combining the process for PTO and PHO. The thin-film PHT grown by ALD is shown to have electronic properties that rival PZT grown at compositions near the morphotropic phase boundary (MPB). The processes for both ALD PZT and PHT are shown to yield films with promising properties for microelectromechanical systems (MEMS) actuators and may help to dramatically increase the areal work density of such devices.
  • Thumbnail Image
    Item
    MEMS Conveyance: Piezoelectric Actuator Arrays for Reconfigurable RF Circuits
    (2015) Tellers, Mary; Bergbreiter, Sarah E; Mechanical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    An array of piezoelectric cantilevers was designed, fabricated, and characterized for use as a micromanipulation surface in a reconfigurable RF circuit micro-factory. The project, known as RFactory, is an effort by the U.S. Army Research Laboratory to create environmentally adaptable, rapidly upgradeable RF systems. The RFactory actuator surface uses unimorph lead zirconate titanate cantilevers with metal posts at the tip that exaggerate the horizontal deflection produced by out-of-plane bending. The motion of a circuit component on the surface has been modeled and observed experimentally. By varying the waveform, voltage amplitude, and frequency of the drive signal, as well as the actuator length and width, the speed and precision of the motion can be controlled. From these characterization efforts, operating conditions that create speeds above 1 mm/s and low positional error (<200 microns after 5 mm translation) have been identified. Finally, full system RF reconfigurability has been demonstrated.
  • Thumbnail Image
    Item
    Piezoelectric Vibration Energy Harvesting From Coupled Structural-Acoustic Systems
    (2013) ALADWANI, ABDULAZIZ EBRAHIM; Baz, Amr; Mechanical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    A comprehensive theoretical and experimental study of the fundamentals and the underlying phenomena governing the operation of piezoelectric vibration energy harvesting from coupled structural-acoustic systems is presented. Analytical and finite element models are developed based on variational formulations to describe the energy harvesting from uncoupled structural elements as well as structural elements coupled with acoustic cavities. The models enable the predictions of the structural displacement, output electric voltage, and fluid pressure for various loading conditions on the energy harvesting system. The developed models also include dynamic magnification means to enhance the energy harvesting capabilities and enable harnessing of the vibration energy over a broader operating frequency range. The predictions of all the models are experimentally validated by using structural elements varying from beams to plates. Close agreements are demonstrated between the theoretical predictions and the obtained experimental results. The theoretical and experimental tools developed, in this dissertation, provide invaluable means for designing a wide variety of efficient energy harvesters for harnessing the vibrational energy inside automobiles, helicopters, aircrafts, and other types of structures that interact internally or externally with a fluid medium. With such harnessed energy, a slew of on-board sensors can be powered to enable the continuous monitoring of the condition and health of these structures without the need for external power sources.
  • Thumbnail Image
    Item
    Traveling Wave Thermoacoustic-Piezoelectric Energy Harvester: Theory and Experiment
    (2011) Roshwalb, Andrew Zvi; Baz, Amr; Mechanical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    This thesis presents a theoretical and experimental investigation of a piezoelec- tric energy harvester coupled to a traveling wave thermoacoustic engine (TWTAE). By simplifying the engine using a lumped-parameter model, the performance pa- rameters such as pressure oscillation frequency and amplitude, regenerator hot end temperature, and piezoelectric output voltage are predicted. Also, an axisymmetric finite element model of the piezoelectric energy harvester is developed, resulting in a two-part reduced-order model of the electromechanical impedance of the harvester. The predictions of the finite element model are compared with those of ANSYS finite element analysis and validated experimentally. The two-part model is utilized in a numerical analysis of the TWTAE using DeltaEC (Design Environment for Low- Amplitude ThermoAcoustic Energy Conversion). Results from pressure transducers and the piezoelectric disc attached to a physical realization of the TWTAE are com- pared with theoretical predictions of the lumped-parameter models and DeltaEC analysis. The developed theoretical techniques and experimental validation provide invaluable tools for effective design of the thermoacoustic-piezoelectric harvester.
  • Thumbnail Image
    Item
    DEVELOPMENT OF A SIMPLIFIED, MASS PRODUCIBLE HYBRIDIZED AMBIENT, LOW FREQUENCY, LOW INTENSITY VIBRATION ENERGY SCAVENGER (HALF-LIVES)
    (2010) Khbeis, Michael Tawfik; Ghodssi, Reza; Electrical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Scavenging energy from environmental sources is an active area of research to enable remote sensing and microsystems applications. Furthermore, as energy demands soar, there is a significant need to explore new sources and curb waste. Vibration energy scavenging is one environmental source for remote applications and a candidate for recouping energy wasted by mechanical sources that can be harnessed to monitor and optimize operation of critical infrastructure (e.g. Smart Grid). Current vibration scavengers are limited by volume and ancillary requirements for operation such as control circuitry overhead and battery sources. This dissertation, for the first time, reports a mass producible hybrid energy scavenger system that employs both piezoelectric and electrostatic transduction on a common MEMS device. The piezoelectric component provides an inherent feedback signal and pre-charge source that enables electrostatic scavenging operation while the electrostatic device provides the proof mass that enables low frequency operation. The piezoelectric beam forms the spring of the resonant mass-spring transducer for converting vibration excitation into an AC electrical output. A serially poled, composite shim, piezoelectric bimorph produces the highest output rectified voltage of over 3.3V and power output of 145uW using ¼ g vibration acceleration at 120Hz. Considering solely the volume of the piezoelectric beam and tungsten proof mass, the volume is 0.054cm3, resulting in a power density of 2.68mW/cm3. Incorporation of a simple parallel plate structure that provides the proof mass for low frequency resonant operation in addition to cogeneration via electrostatic energy scavenging provides a 19.82 to 35.29 percent increase in voltage beyond the piezoelectric generated DC rails. This corresponds to approximately 2.1nW additional power from the electrostatic scavenger component and demonstrates the first instance of hybrid energy scavenging using both piezoelectric and synchronous electrostatic transduction. Furthermore, it provides a complete system architecture and development platform for additional enhancements that will enable in excess of 100uW additional power from the electrostatic scavenger.
  • Thumbnail Image
    Item
    COMBINATORIAL DISCOVERY OF A MORPHOTROPIC PHASE BOUNDARY IN A LEAD-FREE PIEZOELECTRIC MATERIAL
    (2008-08-07) Fujino, Shigehiro; Takeuchi, Ichiro; Wuttig, Manfred; Material Science and Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    BiFeO3 (BFO) is known to display rich and intricate multiferroic and chemical properties. It has high switchable polarization and piezoelectric properties similar to PbTiO3, but it also suffers from high coercive fields and high leakage currents. This has prompted investigations of doped-BFO as novel solid solutions which may emulate the performance of PbZr1-xTixO3 (PZT) in the composition range of 0.48 < x < 0.52, where a morphotropic phase boundary (MPB) resides and displays substantially enhanced piezoelectric and ferroelectric properties. However neither an increase in electromechanical constants as a function of dopant concentration or domain structures indicative of a MPB piezoceramic had been reported in lead-free BFO-based systems prior to this work. There are some guidelines which predict the presence of MPBs, and one can explore novel compositions by systematically searching for similar structural transitions, Yet comprehensive mapping of compositions requires synthesis of an enormously large number of individual samples. We report on the discovery of a lead-free morphotropic (composition dependent, temperature independent) phase boundary with a simple perovskite structure. The combinatorial thin film strategy was used to identify a rhombohedral to pseudo-orthorhombic structural transition which exhibits a ferroelectric to antiferroelectric transition at approximately Bi0.86Sm0.14FeO3. At the morphtropic phase boundary, there is substantial enhancement in the dielectric and piezoelectric coefficient of Bi0.86Sm0.14FeO3 film is comparable to that of Pb Zr0.52Ti0.48O3 thin film. The discovered compound is a strong candidate if a lead-free piezoelectric material.
  • Thumbnail Image
    Item
    Formation and Piezoelectricity of Self-Assembled PbTiO3-CoFe2O4 Nanostructural Films
    (2008-06-13) tan, zhuopeng; Roytburd, Alexander L; Levin, Igor; Material Science and Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Main tasks of our research include: (1) exploring optimum growth conditions for PLD deposition of self-assembled nanophase PbTiO3-CoFe2O4 films with different compositions and orientations; (2) analyzing morphologies and nanostructures of the two-phase films to clarify relative effects of elastic energy and interface energy on the self-assembled film formation; (3) investigating stress state and relaxation of stresses arising as a result of a paraelectric-ferroelectric transformation in PbTiO3; (4) exploring ferroelectric state in the confined PbTiO3 nanophase in the films with {110} and {111} orientations. Principal results of the research are: (1). Optimum PLD growth conditions to obtain high quality films with distinct separation of epitaxial PbTiO3 and CoFe2O4 nanophases are found after systematic studies. (2). Nano-facets along {111} plane between PbTiO3 and CoFe2O4 phases are found to be generic in addition to orientation dependent macroscopic interfaces. We have concluded that accounting of interface and surface energies is important for description of nano-faceting of interfaces and the near substrate zone of the films while the two-phase morphologies are determined by the elastic interactions; (3). The investigation of the stress state of the {001} film arising due to paraelectric-ferroelectric transition of PbTiO3 have discovered the polydomain nanostructure of the ferroelectric phase with ~50-60% c-domains. Piezoresponse of PbTiO3 should be reduced dramatically by combined effects of dissolution of Fe in PbTiO3, a domains and constraints. The relative large dzz from previous research must contain large extrinsic contribution due to movement of nano-domain walls. (4). Switching spectroscopy piezoresponse force microscopy (SS-PFM) is used to characterize local piezo- ferroelectric property of confined ferroelectrics in {110} and {111} films with composition of 1/3PbTiO3-2/3CoFe2O4. It is proved that PbTiO3 nano-inclusions exhibit ferroelectricity in both films. 180o domain switching is observed under measurement condition (<10V) for the {110} films but not for the {111} film. Quantitatively, both films yield a piezoresponse of about 15% compared to bulk single crystal PbTiO3. It is a reasonable value of intrinsic piezoeffect taking into account mechanical and electrical constraints (depolarizing field) as well as the effect of Fe dissolution and possible in-plane domains
  • Thumbnail Image
    Item
    LEAD ZIRCONATE TITANATE THIN FILMS FOR PIEZOELECTRIC ACTUATION AND SENSING OF MEMS RESONATORS
    (2005-12-07) Piekarski, Brett; DeVoe, Donald; Mechanical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    This research is focused on examining the potential benefits and limitations of applying sol-gel lead zirconate titanate (PZT) piezoelectric thin films to on-chip piezoelectrically driven RF microelectromechanical system (MEMS) resonators in the low frequency (LF) to very high frequency (VHF) frequency range. MEMS fabrication methods are presented for fabricating PZT-based MEMS resonator structures along with investigations into the resultant thin film residual stresses and material properties, and their impact on resonator frequency, beam curvature, and resonant mode shape. The PZT, silicon dioxide (SiO2), platinum (Pt), and silicon nitride (Si3N4) thin film material properties are characterized and validated by wafer bow, cantilever resonance, cantilever thermal-induced tip deflection and finite element modeling (FEM) techniques. The performance of the fabricated PZT-based MEMS resonators are presented and compared to previously demonstrated zinc oxide (ZnO) based resonators as well as to electrostatically based MEMS resonator designs. Resonators with frequency response peaks of greater than 25 dB, quality factors up to 4700, and resonant frequencies up to 10 MHz are demonstrated along with a discussion of their advantages and disadvantages for use as MEMS resonators. Nonlinear resonator response is also investigated in relation to the onset of classic Duffing behavior, beam buckling and mode coupling. Fabrication techniques, operating conditions, and design rules are presented to minimize or eliminate nonlinear resonator response.