Theses and Dissertations from UMD

Permanent URI for this communityhttp://hdl.handle.net/1903/2

New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a give thesis/dissertation in DRUM

More information is available at Theses and Dissertations at University of Maryland Libraries.

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Strategies For Enhancing Performance of Flapping Wing Aerial Vehicles Using Multifunctional Structures and Mixed Flight Modes
    (2018) Holness, Alex; Bruck, Hugh A; Mechanical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Biological flapping wing flight offers a variety of advantages over conventional fixed wing aircraft and rotor craft. For example, flapping propulsion can offer the speed of fixed wing aircraft at similar scales while providing the maneuverability of rotor craft. Avian species easily display feats of perching, payload carrying, endurance flying, and transition behavior. In light of these characteristics, emulating and recreating flapping flight in biomimetic or bioinspired work is important in the development of next generation aerial systems. Unfortunately, recreating flapping wing flight is not easily achieved despite numerous efforts to do so. This is in large part due to technological deficiencies. With emerging technologies, it has been possible to begin to unravel the intricacies of flapping flight. Despite technological advancements, offsetting weight with mechanical systems robust enough to provide power and torque while sustaining loading remains difficult. As a result platforms either have simple flapping kinematics with fair payload or have more complex kinematics with limited excess power which in turn limits payload. The former limits capabilities to mirror biological performance characteristics and the latter limits the energy available to power flight which ultimately negatively impacts mission capabilities. Many flapping wing systems are subpar to traditional flying vehicles. Flapping systems can become more competitive in achieving various mission types with increased system performance. In particular, if endurance is coupled with desirable features such as those displayed in nature, i.e., avian perching, they may become superior assets. In this work, four strategies for increasing performance were pursued as follows: (1) increases to maneuverability and payload via a mixed mode approach of flapping wing used in conjunction with propellers, (2) rapid deceleration and variation of flight envelope via inertial control using the battery, (3) increased endurance via integrated energy storage in the wings, and (4) providing endurance to the point of complete energy autonomy using a design framework considering flapping wings with integrated high efficiency solar cells.
  • Thumbnail Image
    Item
    ANALYTICAL MODELING AND EXPERIMENTAL EVALUATION OF A PASSIVELY MORPHING ORNITHOPTER WING
    (2014) Wissa, Aimy; Hubbard Jr., James E; Aerospace Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Ornithopters or flapping wing Unmanned Aerial Vehicles (UAVs) have potential applications in both civil and military sectors. Amongst all categories of UAVs, ornithopters have a unique ability to fly in low Reynolds number flight regimes and have the agility and maneuverability of rotary wing aircraft. In nature, birds achieve such performance by exploiting various wing kinematics known as gaits. The objective of this work was to improve the steady level flight wing performance of an ornithopter by implementing the Continuous Vortex Gait (CVG) using a novel passive compliant spine. The CVG is a set of bio-inspired kinematics that natural flyers use to produce lift and thrust during steady level flight. A significant contribution of this work was the recognition that the CVG is an avian gait that could be achieved using a passive morphing mechanism. In contrast to rigid-link mechanisms and active approaches, reported by other researchers in the open literature, passive morphing mechanisms require no additional energy expenditure, while introducing minimal weight addition and complexity. During the execution of the CVG, the avian wing wrist is the primary joint responsible for the wing shape changes. Thus a compliant mechanism, called a compliant spine, was fabricated, and integrated in the ornithopter's wing leading edge spar where an avian wrist would normally exist, namely at 37% of the wing half span. Each compliant spine was designed to be flexible in bending during the wing upstroke and stiff in bending during the wing downstroke. Inserting a variable stiffness compliant mechanism in the leading edge (LE) spar of the ornithopter could affect its structural stability. An analytical model was developed to determine the structural stability of the ornithopter LE spar. The model was validated using experimental measurements. The LE spar equations of motion were then reformulated into Mathieu's equation and the LE spar was proven to be structurally stable with a compliant spine design insert. A research ornithopter platform was tested in air and in vacuum as well as in free and constrained flight with various compliant spine designs inserted in its wings. Results from the constrained flight tests indicated that the ornithopter with a compliant spine inserted in its wings consumed 45% less electrical power and produced 16% of its weight in additional lift, without incurring any thrust penalties. Results from, the vacuum constrained tests attributed these benefits to aerodynamic effects rather than inertial effects. Free flight tests were performed at Wright Patterson Air Force Base, which houses the largest indoor flight laboratory in the country. The wing kinematics along with the vehicle dynamics were captured during this testing using Vicon® motion tracking cameras. These flight tests proved to be successful in producing consistent and repeatable flight data over more than eight free flight flapping cycles of free flight and validated a new and novel testing technique. The ornithopter body dynamics were shown to be significant, i.e. ±4gs. Inserting the compliant spine into the leading edge spar of the ornithopter during free flight reduced the baseline configuration body vertical center of mass positive acceleration by 69%, which translates into overall lift gains. It also increased the horizontal propulsive force by 300%, which translates into thrust gains.