Theses and Dissertations from UMD

Permanent URI for this communityhttp://hdl.handle.net/1903/2

New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a give thesis/dissertation in DRUM

More information is available at Theses and Dissertations at University of Maryland Libraries.

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Item
    Probing the Multiphase Interstellar Medium and Star Formation in Nearby Galaxies through Far-infrared Spectroscopy
    (2015) Herrera Camus, Rodrigo; Bolatto, Alberto; Astronomy; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    We present a study of different aspects of the multi-phase interstellar medium (ISM) of nearby galaxies, including detailed analysis of the low-excitation ionized gas, the thermal pressure (Pth) of the neutral gas, the dust-to-gas mass ratio (DGR) in low-metallicity environments, and the use of far-infrared transitions as tracers of the star formation rate (SFR). We based our work on the largest sample to date of spatially-resolved, infrared observations of nearby galaxies drawn from the KINGFISH and ``Beyond the Peak'' surveys. We use deep infrared observations to study the DGR of the extremely metal-poor galaxy I Zw 18. We measure a DGR upper-limit of 8.1x10^{-5}. This value is a factor of ~8 lower than the expected DGR if a linear correlation between DGR and metallicity, as observed in spirals, were to hold. Based on the line ratio between the [NII] 122 and 205 um transitions, for 140 regions selected from 21 galaxies we measure electron densities of the singly-ionized gas in the ne~1-230 cm^{-3} range, with a median value of ne=30 cm^{-3}. We find that ne increases as a function of SFR and radiation field strength. We study the reliability of the [CII] and [NII] 122 and 205 um transitions as SFR tracers. In general, we find good correlations between the emission from these fine-structure lines and star formation activity. However, a decrease in the photoelectric heating efficiency in the case of the [CII] line, or collisional quenching of the [NII] lines, can cause calibrations based on these transitions to underestimate the SFR. Finally, for a sample of atomic-dominated regions selected from 31 galaxies, we use the [CII] and HI lines to measure the cooling rate per H atom and Pth of the cold, neutral gas. We find a \pt\ distribution that can be well described by a log-normal distribution with median Pth/k~5,500 K cm^{-3}. We find correlations of increasing Pth with radiation field intensity and SFR, which is consistent with the results from two-phase ISM models in pressure equilibrium.
  • Thumbnail Image
    Item
    Neutron Detection by Scintillation of Noble-Gas Excimers
    (2012) McComb, Jacob Collin; al-Sheikhly, Mohamad; Nuclear Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Neutron detection is a technique essential to homeland security, nuclear reactor instrumentation, neutron diffraction science, oil-well logging, particle physics and radiation safety. The current shortage of helium-3, the neutron absorber used in most gas-filled proportional counters, has created a strong incentive to develop alternate methods of neutron detection. Excimer-based neutron detection (END) provides an alternative with many attractive properties. Like proportional counters, END relies on the conversion of a neutron into energetic charged particles, through an exothermic capture reaction with a neutron absorbing nucleus (10B, 6Li,3He). As charged particles from these reactions lose energy in a surrounding gas, they cause electron excitation and ionization. Whereas most gas-filled detectors collect ionized charge to form a signal, END depends on the formation of diatomic noble-gas excimers (Ar2*, Kr2*, Xe2*). Upon decaying, excimers emit far-ultraviolet (FUV) photons, which may be collected by a photomultiplier tube or other photon detector. This phenomenon provides a means of neutron detection with a number of advantages over traditional methods. This thesis investigates excimer scintillation yield from the heavy noble gases following the boron-neutron capture reaction in 10B thin-film targets. Additionally, the thesis examines noble-gas excimer lifetimes with relationship to gas type and gas pressure. Experimental data were collected both at the National Institute of Standards and Technology (NIST) Center for Neutron Research, and on a newly developed neutron beamline at the Maryland University Training Reactor. The components of the experiment were calibrated at NIST and the University of Maryland, using FUV synchrotron radiation, neutron imaging, and foil activation techniques, among others. Computer modeling was employed to simulate charged-particle transport and excimer photon emission within the experimental apparatus. The observed excimer scintillation yields from the 10B(n,α)7Li reaction are comparable to the yields of many liquid and solid neutron scintillators. Additionally, the observed slow triplet-state decay of neutron-capture-induced excimers may be used in a practical detector to discriminate neutron interactions from gamma-ray interactions. The results of these measurements and simulations will contribute to the development and optimization of a deployable neutron detector based on noble-gas excimer scintillation.
  • Thumbnail Image
    Item
    Electrostatic Gas-Liquid Separation from High Speed Streams--Application to Advanced On-Line/On- Demand Separation Techniques
    (2009) Alshehhi, Mohamed Saeed; Ohadi, Michael M; Mechanical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    The separation of suspended droplets from gases has been one of the basic scientific and technical problems of the industrial era and this interest continues. Various industrial applications, such as refrigeration and HVAC systems, require control of fine droplets concentrations in moving gaseous mediums to maintain system functionality and efficiency. Separating of such fine droplets can be achieved using electrostatic charging as implemented in electrostatic precipitators (ESPs). They use electrostatic force to charge and collect solid particles. The objective of the present work was to study the feasibility of using wiretube electrostatic separator on the removal of fine water and oil droplets from air stream based on corona discharge ionization process. A parametric study was conducted to find key parameters affecting the separation process. This goal was approached by simulating the charging and separation phenomena numerically, and then verifying the modeling findings through experiments. The numerical methodology simulated the highly complex interaction between droplets suspended in the flow and electrical field. Two test rigs were constructed, one for air-water separation and the other for air-oil separation. A wiretube electrostatic separator was used as the test section for both test rigs. The separation performance was evaluated under different electric field and flow conditions. Finally, based on the results, a novel air-water separator prototype was designed, fabricated and tested. The numerical modeling results qualitatively showed acceptable agreement with the experimental data in terms of the trend of grade efficiency based on droplets size. Both numerical modeling results and experimental data showed that with a proper separator design, high separation efficiency is achievable for water and oil droplets. Based on the experimental data, at flow velocity of 5 m/s and applied voltage of 7.0 kV, the maximum separation efficiency for water and oil was 99.999 % and 96.267 %, respectively. The pressure drop was as low as 100 Pa and maximum power consumption was 12.0 W.