Theses and Dissertations from UMD

Permanent URI for this communityhttp://hdl.handle.net/1903/2

New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a give thesis/dissertation in DRUM

More information is available at Theses and Dissertations at University of Maryland Libraries.

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Storage-Centric Wireless Sensor Networks for Smart Buildings
    (2013) Wang, Baobing; Baras, John S; Electrical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    In the first part of the dissertation, we propose a model-based systems design framework, called WSNDesign, to facilitate the design and implementation of wireless sensor networks for Smart Buildings. We apply model-based systems engineering principles to enhance model reusability and collaboration among multiple engineering domains. Specifically, we describe a hierarchy of model libraries to model various behaviors and structures of sensor networks in the context of Smart Buildings, and introduce a system design flow to compose both continuous-time and event-triggered modules to develop applications with support for performance evaluation. WSNDesign can obtain early feedback and high-confidence evaluation of a design without requiring any intrusive and costly deployment. In addition, we develop a graphical tool that exposes a sequence of design choices to system designers, and provides instant feedback about the influence of a design decision on the complexity of system analysis. Our tool can facilitate comprehensive analysis and bring competitive advantage to the systems design workflow by reducing costly unanticipated behaviors. One of the main challenges to design efficient sensor networks is to collect and process the data generated by various sensor motes in Smart Buildings efficiently. To make this task easier, we provide an abstraction for data collection and retrieval in the second part of the dissertation. Specifically, we design and implement a distributed database system, called HybridDB, for application development. HybridDB enables sensors to store large-scale datasets in situ on local NAND flash using a novel resource-aware data storage system, and can process typical queries in sensor networks extremely efficiently. In addition, HybridDB supports incremental $\epsilon$-approximate querying that enables clients to retrieve a just-sufficient set of sensor data by issuing refinement and zoom-in sub-queries to search events and analyze sensor data efficiently. HybridDB can always return an approximate dataset with guaranteed maximum absolute ($L_\infty$-norm) error bound, after applying temporal approximate locally on each sensor, and spatial approximate in the neighborhood on the proxy. Furthermore, HybridDB exploits an adaptive error distribution mechanism between temporal approximate and spatial approximate for trade-offs of energy consumption between sensors and the proxy, and response times between the current sub-query and the following sub-queries. The implementation of HybridDB in TinyOS 2.1 is transformed and imported to WSNDesign as a part of the model libraries.
  • Thumbnail Image
    Item
    Performance Analysis of NAND Flash Memory Solid-State Disks
    (2009) Dirik, Cagdas; Jacob, Bruce; Electrical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    As their prices decline, their storage capacities increase, and their endurance improves, NAND Flash Solid-State Disks (SSD) provide an increasingly attractive alternative to Hard Disk Drives (HDD) for portable computing systems and PCs. HDDs have been an integral component of computing systems for several decades as long-term, non-volatile storage in memory hierarchy. Today's typical hard disk drive is a highly complex electro-mechanical system which is a result of decades of research, development, and fine-tuned engineering. Compared to HDD, flash memory provides a simpler interface, one without the complexities of mechanical parts. On the other hand, today's typical solid-state disk drive is still a complex storage system with its own peculiarities and system problems. Due to lack of publicly available SSD models, we have developed our NAND flash SSD models and integrated them into DiskSim, which is extensively used in academe in studying storage system architectures. With our flash memory simulator, we model various solid-state disk architectures for a typical portable computing environment, quantify their performance under real user PC workloads and explore potential for further improvements. We find the following: * The real limitation to NAND flash memory performance is not its low per-device bandwidth but its internal core interface. * NAND flash memory media transfer rates do not need to scale up to those of HDDs for good performance. * SSD organizations that exploit concurrency at both the system and device level improve performance significantly. * These system- and device-level concurrency mechanisms are, to a significant degree, orthogonal: that is, the performance increase due to one does not come at the expense of the other, as each exploits a different facet of concurrency exhibited within the PC workload. * SSD performance can be further improved by implementing flash-oriented queuing algorithms, access reordering, and bus ordering algorithms which exploit the flash memory interface and its timing differences between read and write requests.