Theses and Dissertations from UMD

Permanent URI for this communityhttp://hdl.handle.net/1903/2

New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a give thesis/dissertation in DRUM

More information is available at Theses and Dissertations at University of Maryland Libraries.

Browse

Search Results

Now showing 1 - 1 of 1
  • Thumbnail Image
    Item
    Vegetation-Hydrodynamic Interactions and the Stability of Channel Inlets of Tidal Freshwater Wetlands, Chesapeake Bay System
    (2014) Statkiewicz, Anna; Prestegaard, Karen L; Geology; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    To maintain elevation, deposition of mineral and organic sediment in tidal freshwater wetlands (TFWs) must outweigh losses due to sea-level rise, erosion, decomposition, and compaction. Sediment loads into tidal marshes are controlled by inlet size and sediment supply, but interactions among vegetation, hydraulics, and geomorphology affect sediment retention. This study focused on these interactions in TFW inlets partially covered by aquatic vegetation (N.luteum, Z.aquatica, and H.verticullata). Measurements of hydraulic parameters and geomorphic change were correlated with observations of spatial and morphological characteristics for each vegetation type. The aquatic plants grew in significantly different water depths and well-defined platforms formed in areas occupied by emergent vegetation where effective shear stress is lowest. Net annual accretion data indicate an inverse relationship between maximum inlet depth and accretion rate. These results suggest that initial vegetation colonization modifies channel inlet morphology; both vegetation and morphology generate the shear stress distributions, which maintain channel form.