Theses and Dissertations from UMD

Permanent URI for this communityhttp://hdl.handle.net/1903/2

New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a give thesis/dissertation in DRUM

More information is available at Theses and Dissertations at University of Maryland Libraries.

Browse

Search Results

Now showing 1 - 1 of 1
  • Item
    EXPERIMENTAL INVESTIGATION OF BOUNDARY LAYER TRANSITION ON CONE-FLARE GEOMETRIES AT MACH 4
    (2024) Norris, Gavin; Laurence, Stuart J; Aerospace Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    This study investigates supersonic boundary layer transition on a cone-flarewith a 5° half-angle straight cone and flared bases of +5°, +10°, and +15°. The experiments used the University of Maryland's Multiphase Flow Investigations Tunnel (MIST), a Mach 4 Ludweig tube. Experiments were performed “dry”, without aerosols or droplets, and focus on the first-mode (Tollmien-Schlichting) boundary layer instability waves and their interaction with the compression corner. Using high-speed Schlieren imaging, the boundary layer dynamics on the cone-flare's top surface were analyzed. The data were processed through Power Spectral Density (PSD) and Spectral Proper Orthogonal Decomposition (SPOD) techniques to study the behavior of the first-mode waves and the transition location changes. The findings reveal coherent wave packets within the boundary layer at frequencies characteristic of the first-mode. The wave packets power increased along the cone and peaked near the compression corner before dissipation on the flare. These findings contribute to the understanding of first-mode boundary layer transition mechanisms in hypersonic flows for the cone-flare geometry.